-
Notifications
You must be signed in to change notification settings - Fork 19
/
imsat_cluster.py
187 lines (140 loc) · 5.66 KB
/
imsat_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse, sys
import numpy as np
import chainer
import chainer.functions as F
from chainer import FunctionSet, Variable, optimizers, cuda, serializers
from munkres import Munkres, print_matrix
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, help='which gpu device to use', default=1)
parser.add_argument('--lam', type=float, help='trade-off parameter for mutual information and smooth regularization',
default=0.1)
parser.add_argument('--mu', type=float, help='trade-off parameter for entropy minimization and entropy maximization',
default=4)
parser.add_argument('--prop_eps', type=float, help='epsilon', default=0.25)
parser.add_argument('--dataset', type=str, help='which dataset to use', default='mnist')
parser.add_argument('--hidden_list', type=str, help='hidden size list', default='1200-1200')
args = parser.parse_args()
if args.dataset == 'mnist':
sys.path.append('mnist')
from load_mnist import *
whole = load_mnist_whole(PATH='mnist/', scale=1.0 / 128.0, shift=-1.0)
else:
print 'The dataset is not supported.'
raise NotImplementedError
n_data = len(whole.data)
n_class = np.max(whole.label) + 1
print n_class
dim = whole.data.shape[1]
print 'use gpu'
chainer.cuda.get_device(args.gpu).use()
xp = cuda.cupy
hidden_list = map(int, args.hidden_list.split('-'))
def call_bn(bn, x, test=False, update_batch_stats=True):
if not update_batch_stats:
return F.batch_normalization(x, bn.gamma, bn.beta, use_cudnn=False)
if test:
return F.fixed_batch_normalization(x, bn.gamma, bn.beta, bn.avg_mean, bn.avg_var, use_cudnn=False)
else:
return bn(x)
def kl(p, q):
return F.sum(p * F.log((p + 1e-8) / (q + 1e-8))) / float(len(p.data))
def distance(y0, y1):
return kl(F.softmax(y0), F.softmax(y1))
def entropy(p):
if p.data.ndim == 2:
return - F.sum(p * F.log(p + 1e-8)) / float(len(p.data))
elif p.data.ndim == 1:
return - F.sum(p * F.log(p + 1e-8))
else:
raise NotImplementedError
def vat(forward, distance, x, eps_list, xi=10, Ip=1):
y = forward(Variable(x))
y.unchain_backward()
d = xp.random.normal(size=x.shape, dtype=np.float32)
d = d / xp.sqrt(xp.sum(d ** 2, axis=1)).reshape((x.shape[0], 1))
for ip in range(Ip):
d_var = Variable(d.astype(np.float32))
y2 = forward(x + xi * d_var)
kl_loss = distance(y, y2)
kl_loss.backward()
d = d_var.grad
d = d / xp.sqrt(xp.sum(d ** 2, axis=1)).reshape((x.shape[0], 1))
d_var = Variable(d.astype(np.float32))
eps = args.prop_eps * eps_list
y2 = forward(x + F.transpose(eps * F.transpose(d_var)))
return distance(y, y2)
class Encoder(chainer.Chain):
def __init__(self):
super(Encoder, self).__init__(
l1=F.Linear(dim, hidden_list[0], wscale=0.1),
l2=F.Linear(hidden_list[0], hidden_list[1], wscale=0.1),
l3=F.Linear(hidden_list[1], n_class, wscale=0.0001),
bn1=F.BatchNormalization(hidden_list[0]),
bn2=F.BatchNormalization(hidden_list[1])
)
def __call__(self, x, test=False, update_batch_stats=True):
h = F.relu(call_bn(self.bn1, self.l1(x), test=test, update_batch_stats=update_batch_stats))
h = F.relu(call_bn(self.bn2, self.l2(h), test=test, update_batch_stats=update_batch_stats))
y = self.l3(h)
return y
def enc_aux_noubs(x):
return enc(x, test=False, update_batch_stats=False)
def loss_unlabeled(x, eps_list):
L = vat(enc_aux_noubs, distance, x.data, eps_list)
return L
def loss_test(x, t):
prob = F.softmax(enc(x, test=True)).data
pmarg = cuda.to_cpu(xp.sum(prob, axis=0) / len(prob))
ent = np.sum(-pmarg * np.log(pmarg + 1e-8))
pred = cuda.to_cpu(np.argmax(prob, axis=1))
tt = cuda.to_cpu(t.data)
m = Munkres()
mat = np.zeros((n_class, n_class))
for i in range(n_class):
for j in range(n_class):
mat[i][j] = np.sum(np.logical_and(pred == i, tt == j))
indexes = m.compute(-mat)
corresp = []
for i in range(n_class):
corresp.append(indexes[i][1])
pred_corresp = [corresp[int(predicted)] for predicted in pred]
acc = np.sum(pred_corresp == tt) / float(len(tt))
return acc, ent
def loss_equal(enc, x):
p_logit = enc(x)
p = F.softmax(p_logit)
p_ave = F.sum(p, axis=0) / x.data.shape[0]
ent = entropy(p)
return ent, -F.sum(p_ave * F.log(p_ave + 1e-8))
enc = Encoder()
enc.to_gpu()
o_enc = optimizers.Adam(alpha=0.002, beta1=0.9)
o_enc.setup(enc)
batchsize_ul = 250
n_epoch = 50
nearest_dist = np.loadtxt(args.dataset + '/10th_neighbor.txt').astype(np.float32)
for epoch in range(n_epoch):
print epoch
sum_loss_entmax = 0
sum_loss_entmin = 0
vatt = 0
for it in range(n_data / batchsize_ul):
x_u, _, ind = whole.get(batchsize_ul, need_index=True)
loss_eq1, loss_eq2 = loss_equal(enc, Variable(x_u))
loss_eq = loss_eq1 - args.mu * loss_eq2
sum_loss_entmin += loss_eq1.data
sum_loss_entmax += loss_eq2.data
loss_ul = loss_unlabeled(Variable(x_u), cuda.to_gpu(nearest_dist[ind]))
o_enc.zero_grads()
(loss_ul + args.lam * loss_eq).backward()
o_enc.update()
vatt += loss_ul.data
loss_ul.unchain_backward()
print 'entmax ', sum_loss_entmax / (n_data / batchsize_ul)
print 'entmin ', sum_loss_entmin / (n_data / batchsize_ul)
print 'vatt ', vatt / (n_data / batchsize_ul)
x_ul, t_ul = cuda.to_gpu(whole.data), cuda.to_gpu(whole.label)
acc, ment = loss_test(Variable(x_ul, volatile=True), Variable(t_ul, volatile=True))
print "ment: ", ment
print "accuracy: ", acc
sys.stdout.flush()