-
Notifications
You must be signed in to change notification settings - Fork 4
/
dataset_split_preprocess.py
155 lines (144 loc) · 3.99 KB
/
dataset_split_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# data segmentation code # resize origin code to match classifier model and split the data set into training and test set
import sys
import os
import shutil
import csv
import subprocess
import random
import time
import itertools
from PIL import Image
#UCM path
imagesPath = '/home/hpc-126/remote-host/UCM/UCMerced_LandUse'
converted_path ='/home/hpc-126/remote-host/UCM/train-128-20'
#NUPW Path
#imagesPath = '/home/hpc-126/remote-host/NUPW-45/NWPU-RESISC45'
#converted_path ='/home/hpc-126/remote-host/NUPW-45/train224x224'
train_path = ''
test_path =''
imageWidth =128
imageHeight =128
split_ratio =0.20 # ratio of train and test set size
datatype ='UCM'
labels = ''
if datatype == 'UCM':
labels = {
'golfcourse': 9,
'overpass': 14,
'freeway': 8,
'denseresidential': 6,
'mediumresidential': 12,
'harbor': 10,
'tenniscourt': 20,
'mobilehomepark': 13,
'parkinglot': 15,
'agricultural': 0,
'chaparral': 5,
'airplane': 1,
'river': 16,
'baseballdiamond': 2,
'intersection': 11,
'beach': 3,
'runway': 17,
'forest': 7,
'sparseresidential': 18,
'buildings': 4,
'storagetanks': 19
}
elif datatype =='NUPW':
labels = {
'airplane': 0,
'airport' : 1,
'baseball_diamond': 2,
'basketball_court': 3,
'beach':4,
'bridge':5,
'chaparral':6,
'church':7,
'circular_farmland':8,
'cloud':9,
'commercial_area':10,
'dense_residential':11,
'desert':12,
'forest':13,
'freeway':14,
'golf_course':15,
'ground_track_field':16,
'harbor':17,
'industrial_area':18,
'intersection':19,
'island':20,
'lake':21,
'meadow':22,
'medium_residential':23,
'mobile_home_park':24,
'mountain':25,
'overpass':26,
'palace':27,
'parking_lot':28,
'railway':29,
'railway_station':30,
'rectangular_farmland':31,
'river':32,
'roundabout':33,
'runway':34,
'sea_ice':35,
'ship':36,
'snowberg':37,
'sparse_residential':38,
'stadium':39,
'storage_tank':40,
'tennis_court':41,
'terrace':42,
'thermal_power_station':43,
'wetland':44
}
else :
print ('please specify the data type : UCM NUPW')
def remove_dir(path):
try:
shutil.rmtree(path)
except OSError, e:
if e.errno == 2:
pass
else:
raise
def convert_images(path):
images = []
train_path = os.path.join(converted_path, 'train')
test_path = os.path.join(converted_path, 'test')
os.mkdir(train_path)
os.mkdir(test_path)
for root, dirs, files in os.walk(path):
if root == path:
continue
category = os.path.basename(root)
label = labels[category]
UCMjpgpath_train =(os.path.join(train_path, str(label)))
UCMjpgpath_test = (os.path.join(test_path, str(label)))
os.mkdir(UCMjpgpath_train)
os.mkdir(UCMjpgpath_test)
random.shuffle(files)
count =0
for name in files:
im = Image.open(os.path.join(root, name))
(width, height) = im.size
if width != imageWidth or height != imageHeight:
im = im.resize((imageWidth, imageHeight), Image.ANTIALIAS)
if name.find('.tif') ==-1:
jpeg_name=name
else:
jpeg_name = name.replace(".tif", ".jpg")
if count < int(len(files)*split_ratio):
im.save(os.path.join(UCMjpgpath_train, jpeg_name))
else:
im.save(os.path.join(UCMjpgpath_test, jpeg_name))
count+=1
return images
def main (argv):
if os.path.exists(converted_path):
remove_dir(converted_path)
os.mkdir(converted_path)
convert_images(imagesPath)
if __name__== "__main__":
main(sys.argv)