-
Notifications
You must be signed in to change notification settings - Fork 0
/
alma.go
108 lines (96 loc) · 3.4 KB
/
alma.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
package indicator
import (
"math"
"github.com/c9s/bbgo/pkg/datatype/floats"
"github.com/c9s/bbgo/pkg/types"
)
// Refer: Arnaud Legoux Moving Average
// Refer: https://capital.com/arnaud-legoux-moving-average
// Also check https://github.com/DaveSkender/Stock.Indicators/blob/main/src/a-d/Alma/Alma.cs
//
// The Arnaud Legoux Moving Average (ALMA) is a technical analysis indicator that is used to smooth price data and reduce the lag associated
// with traditional moving averages. It was developed by Arnaud Legoux and is based on the weighted moving average, with the weighting factors
// determined using a Gaussian function. The ALMA is calculated by taking the weighted moving average of the input data using weighting factors
// that are based on the standard deviation of the data and the specified length of the moving average. This resulting average is then plotted
// on the price chart as a line, which can be used to make predictions about future price movements. The ALMA is typically more responsive to
// changes in the underlying data than a simple moving average, but may be less reliable in trending markets.
//
// @param offset: Gaussian applied to the combo line. 1->ema, 0->sma
// @param sigma: the standard deviation applied to the combo line. This makes the combo line sharper
//go:generate callbackgen -type ALMA
type ALMA struct {
types.SeriesBase
types.IntervalWindow // required
Offset float64 // required: recommend to be 0.5
Sigma int // required: recommend to be 5
weight []float64
sum float64
input []float64
Values floats.Slice
UpdateCallbacks []func(value float64)
}
const MaxNumOfALMA = 5_000
const MaxNumOfALMATruncateSize = 100
func (inc *ALMA) Update(value float64) {
if inc.weight == nil {
inc.SeriesBase.Series = inc
inc.weight = make([]float64, inc.Window)
m := inc.Offset * (float64(inc.Window) - 1.)
s := float64(inc.Window) / float64(inc.Sigma)
inc.sum = 0.
for i := 0; i < inc.Window; i++ {
diff := float64(i) - m
wt := math.Exp(-diff * diff / 2. / s / s)
inc.sum += wt
inc.weight[i] = wt
}
}
inc.input = append(inc.input, value)
if len(inc.input) >= inc.Window {
weightedSum := 0.0
inc.input = inc.input[len(inc.input)-inc.Window:]
for i := 0; i < inc.Window; i++ {
weightedSum += inc.weight[inc.Window-i-1] * inc.input[i]
}
inc.Values.Push(weightedSum / inc.sum)
if len(inc.Values) > MaxNumOfALMA {
inc.Values = inc.Values[MaxNumOfALMATruncateSize-1:]
}
}
}
func (inc *ALMA) Last() float64 {
if len(inc.Values) == 0 {
return 0
}
return inc.Values[len(inc.Values)-1]
}
func (inc *ALMA) Index(i int) float64 {
if i >= len(inc.Values) {
return 0
}
return inc.Values[len(inc.Values)-i-1]
}
func (inc *ALMA) Length() int {
return len(inc.Values)
}
var _ types.SeriesExtend = &ALMA{}
func (inc *ALMA) CalculateAndUpdate(allKLines []types.KLine) {
if inc.input == nil {
for _, k := range allKLines {
inc.Update(k.Close.Float64())
inc.EmitUpdate(inc.Last())
}
return
}
inc.Update(allKLines[len(allKLines)-1].Close.Float64())
inc.EmitUpdate(inc.Last())
}
func (inc *ALMA) handleKLineWindowUpdate(interval types.Interval, window types.KLineWindow) {
if inc.Interval != interval {
return
}
inc.CalculateAndUpdate(window)
}
func (inc *ALMA) Bind(updater KLineWindowUpdater) {
updater.OnKLineWindowUpdate(inc.handleKLineWindowUpdate)
}