Skip to content

Machine learning based hypoxemia prediction

Notifications You must be signed in to change notification settings

wchshapp/Hypoxemia-MLPred

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hypoxemia-MLPred

Usage

  1. Edit directories in "file_config/data.conf".
  2. Make directories in folder "data":
    cd data
    mkdir raw_data data_frame features model result
    cd ..
    
    Then load raw data files into "data/raw_data". Make sure it contains the following three files/folders: demographic.csv, ICD.csv, vitals/2019_06_27_Mon*.csv.
  3. Generate DataFrame from raw data
    python gen_dataframe.py
    
  4. Extract static and realtime features from generated DataFrame
    python feature_extraction.py --if_impute True/False
                                 --static_txt bow/rbow
                                 --dynamic_txt notxt/rbow
    
  5. Train initial prediction using extracted features
    python train_initial_predictor.py --hypoxemia_threshhold 90
                                      --hypoxemia_window 10
                                      --prediction_window 5
                                      --static_feature_file FILENAME_OF_FEATURE.csv
    
  6. Train real-time prediction using extracted features
    python train_realtime_predictor.py --hypoxemia_threshhold 90
                                       --hypoxemia_window 10
                                       --prediction_window 5
                                       --dynamic_feature_file FILENAME_OF_FEATURE.csv
    

About

Machine learning based hypoxemia prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.0%
  • Jupyter Notebook 8.6%
  • Shell 0.4%