forked from ROCm/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
offline_inference_vision_language.py
504 lines (397 loc) · 15 KB
/
offline_inference_vision_language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
"""
This example shows how to use vLLM for running offline inference with
the correct prompt format on vision language models for text generation.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.utils import FlexibleArgumentParser
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
# lower-end GPUs.
# Unless specified, these settings have been tested to work on a single L4.
# LLaVA-1.5
def run_llava(question: str, modality: str):
assert modality == "image"
prompt = f"USER: <image>\n{question}\nASSISTANT:"
llm = LLM(model="llava-hf/llava-1.5-7b-hf", max_model_len=4096)
stop_token_ids = None
return llm, prompt, stop_token_ids
# LLaVA-1.6/LLaVA-NeXT
def run_llava_next(question: str, modality: str):
assert modality == "image"
prompt = f"[INST] <image>\n{question} [/INST]"
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=8192)
stop_token_ids = None
return llm, prompt, stop_token_ids
# LlaVA-NeXT-Video
# Currently only support for video input
def run_llava_next_video(question: str, modality: str):
assert modality == "video"
prompt = f"USER: <video>\n{question} ASSISTANT:"
llm = LLM(model="llava-hf/LLaVA-NeXT-Video-7B-hf", max_model_len=8192)
stop_token_ids = None
return llm, prompt, stop_token_ids
# LLaVA-OneVision
def run_llava_onevision(question: str, modality: str):
if modality == "video":
prompt = f"<|im_start|>user <video>\n{question}<|im_end|> \
<|im_start|>assistant\n"
elif modality == "image":
prompt = f"<|im_start|>user <image>\n{question}<|im_end|> \
<|im_start|>assistant\n"
llm = LLM(model="llava-hf/llava-onevision-qwen2-7b-ov-hf",
max_model_len=16384)
stop_token_ids = None
return llm, prompt, stop_token_ids
# Fuyu
def run_fuyu(question: str, modality: str):
assert modality == "image"
prompt = f"{question}\n"
llm = LLM(model="adept/fuyu-8b", max_model_len=2048, max_num_seqs=2)
stop_token_ids = None
return llm, prompt, stop_token_ids
# Phi-3-Vision
def run_phi3v(question: str, modality: str):
assert modality == "image"
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
# Note: The default setting of max_num_seqs (256) and
# max_model_len (128k) for this model may cause OOM.
# You may lower either to run this example on lower-end GPUs.
# In this example, we override max_num_seqs to 5 while
# keeping the original context length of 128k.
# num_crops is an override kwarg to the multimodal image processor;
# For some models, e.g., Phi-3.5-vision-instruct, it is recommended
# to use 16 for single frame scenarios, and 4 for multi-frame.
#
# Generally speaking, a larger value for num_crops results in more
# tokens per image instance, because it may scale the image more in
# the image preprocessing. Some references in the model docs and the
# formula for image tokens after the preprocessing
# transform can be found below.
#
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194
llm = LLM(
model="microsoft/Phi-3-vision-128k-instruct",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
# Note - mm_processor_kwargs can also be passed to generate/chat calls
mm_processor_kwargs={"num_crops": 16},
)
stop_token_ids = None
return llm, prompt, stop_token_ids
# PaliGemma
def run_paligemma(question: str, modality: str):
assert modality == "image"
# PaliGemma has special prompt format for VQA
prompt = "caption en"
llm = LLM(model="google/paligemma-3b-mix-224")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Chameleon
def run_chameleon(question: str, modality: str):
assert modality == "image"
prompt = f"{question}<image>"
llm = LLM(model="facebook/chameleon-7b", max_model_len=4096)
stop_token_ids = None
return llm, prompt, stop_token_ids
# MiniCPM-V
def run_minicpmv(question: str, modality: str):
assert modality == "image"
# 2.0
# The official repo doesn't work yet, so we need to use a fork for now
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
# model_name = "HwwwH/MiniCPM-V-2"
# 2.5
# model_name = "openbmb/MiniCPM-Llama3-V-2_5"
#2.6
model_name = "openbmb/MiniCPM-V-2_6"
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
llm = LLM(
model=model_name,
max_model_len=4096,
max_num_seqs=2,
trust_remote_code=True,
)
# NOTE The stop_token_ids are different for various versions of MiniCPM-V
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
messages = [{
'role': 'user',
'content': f'(<image>./</image>)\n{question}'
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return llm, prompt, stop_token_ids
# H2OVL-Mississippi
def run_h2ovl(question: str, modality: str):
assert modality == "image"
model_name = "h2oai/h2ovl-mississippi-2b"
llm = LLM(
model=model_name,
trust_remote_code=True,
max_model_len=8192,
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
messages = [{'role': 'user', 'content': f"<image>\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Stop tokens for H2OVL-Mississippi
# https://huggingface.co/h2oai/h2ovl-mississippi-2b
stop_token_ids = [tokenizer.eos_token_id]
return llm, prompt, stop_token_ids
# InternVL
def run_internvl(question: str, modality: str):
assert modality == "image"
model_name = "OpenGVLab/InternVL2-2B"
llm = LLM(
model=model_name,
trust_remote_code=True,
max_model_len=4096,
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
messages = [{'role': 'user', 'content': f"<image>\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Stop tokens for InternVL
# models variants may have different stop tokens
# please refer to the model card for the correct "stop words":
# https://huggingface.co/OpenGVLab/InternVL2-2B#service
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return llm, prompt, stop_token_ids
# NVLM-D
def run_nvlm_d(question: str, modality: str):
assert modality == "image"
model_name = "nvidia/NVLM-D-72B"
# Adjust this as necessary to fit in GPU
llm = LLM(
model=model_name,
trust_remote_code=True,
max_model_len=4096,
tensor_parallel_size=4,
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
messages = [{'role': 'user', 'content': f"<image>\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
stop_token_ids = None
return llm, prompt, stop_token_ids
# BLIP-2
def run_blip2(question: str, modality: str):
assert modality == "image"
# BLIP-2 prompt format is inaccurate on HuggingFace model repository.
# See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa
prompt = f"Question: {question} Answer:"
llm = LLM(model="Salesforce/blip2-opt-2.7b")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Qwen
def run_qwen_vl(question: str, modality: str):
assert modality == "image"
llm = LLM(
model="Qwen/Qwen-VL",
trust_remote_code=True,
max_model_len=1024,
max_num_seqs=2,
)
prompt = f"{question}Picture 1: <img></img>\n"
stop_token_ids = None
return llm, prompt, stop_token_ids
# Qwen2-VL
def run_qwen2_vl(question: str, modality: str):
assert modality == "image"
model_name = "Qwen/Qwen2-VL-7B-Instruct"
llm = LLM(
model=model_name,
max_model_len=4096,
max_num_seqs=5,
# Note - mm_processor_kwargs can also be passed to generate/chat calls
mm_processor_kwargs={
"min_pixels": 28 * 28,
"max_pixels": 1280 * 28 * 28,
},
)
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
f"{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = None
return llm, prompt, stop_token_ids
# Pixtral HF-format
def run_pixtral_hf(question: str, modality: str):
assert modality == "image"
model_name = "mistral-community/pixtral-12b"
llm = LLM(
model=model_name,
max_model_len=8192,
)
prompt = f"<s>[INST]{question}\n[IMG][/INST]"
stop_token_ids = None
return llm, prompt, stop_token_ids
# LLama 3.2
def run_mllama(question: str, modality: str):
assert modality == "image"
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# Note: The default setting of max_num_seqs (256) and
# max_model_len (131072) for this model may cause OOM.
# You may lower either to run this example on lower-end GPUs.
# The configuration below has been confirmed to launch on a single L40 GPU.
llm = LLM(
model=model_name,
max_model_len=4096,
max_num_seqs=16,
enforce_eager=True,
)
prompt = f"<|image|><|begin_of_text|>{question}"
stop_token_ids = None
return llm, prompt, stop_token_ids
# Molmo
def run_molmo(question, modality):
assert modality == "image"
model_name = "allenai/Molmo-7B-D-0924"
llm = LLM(
model=model_name,
trust_remote_code=True,
dtype="bfloat16",
)
prompt = question
stop_token_ids = None
return llm, prompt, stop_token_ids
# GLM-4v
def run_glm4v(question: str, modality: str):
assert modality == "image"
model_name = "THUDM/glm-4v-9b"
llm = LLM(model=model_name,
max_model_len=2048,
max_num_seqs=2,
trust_remote_code=True,
enforce_eager=True)
prompt = question
stop_token_ids = [151329, 151336, 151338]
return llm, prompt, stop_token_ids
model_example_map = {
"llava": run_llava,
"llava-next": run_llava_next,
"llava-next-video": run_llava_next_video,
"llava-onevision": run_llava_onevision,
"fuyu": run_fuyu,
"phi3_v": run_phi3v,
"paligemma": run_paligemma,
"chameleon": run_chameleon,
"minicpmv": run_minicpmv,
"blip-2": run_blip2,
"h2ovl_chat": run_h2ovl,
"internvl_chat": run_internvl,
"NVLM_D": run_nvlm_d,
"qwen_vl": run_qwen_vl,
"qwen2_vl": run_qwen2_vl,
"pixtral_hf": run_pixtral_hf,
"mllama": run_mllama,
"molmo": run_molmo,
"glm4v": run_glm4v,
}
def get_multi_modal_input(args):
"""
return {
"data": image or video,
"question": question,
}
"""
if args.modality == "image":
# Input image and question
image = ImageAsset("cherry_blossom") \
.pil_image.convert("RGB")
img_question = "What is the content of this image?"
return {
"data": image,
"question": img_question,
}
if args.modality == "video":
# Input video and question
video = VideoAsset(name="sample_demo_1.mp4",
num_frames=args.num_frames).np_ndarrays
vid_question = "Why is this video funny?"
return {
"data": video,
"question": vid_question,
}
msg = f"Modality {args.modality} is not supported."
raise ValueError(msg)
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
modality = args.modality
mm_input = get_multi_modal_input(args)
data = mm_input["data"]
question = mm_input["question"]
llm, prompt, stop_token_ids = model_example_map[model](question, modality)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2,
max_tokens=64,
stop_token_ids=stop_token_ids)
assert args.num_prompts > 0
if args.num_prompts == 1:
# Single inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
modality: data
},
}
else:
# Batch inference
inputs = [{
"prompt": prompt,
"multi_modal_data": {
modality: data
},
} for _ in range(args.num_prompts)]
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'vision language models for text generation')
parser.add_argument('--model-type',
'-m',
type=str,
default="llava",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument('--num-prompts',
type=int,
default=4,
help='Number of prompts to run.')
parser.add_argument('--modality',
type=str,
default="image",
choices=['image', 'video'],
help='Modality of the input.')
parser.add_argument('--num-frames',
type=int,
default=16,
help='Number of frames to extract from the video.')
args = parser.parse_args()
main(args)