forked from ROCm/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoffline_inference_pixtral.py
165 lines (143 loc) · 4.47 KB
/
offline_inference_pixtral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# ruff: noqa
import argparse
from vllm import LLM
from vllm.sampling_params import SamplingParams
# This script is an offline demo for running Pixtral.
#
# If you want to run a server/client setup, please follow this code:
#
# - Server:
#
# ```bash
# vllm serve mistralai/Pixtral-12B-2409 --tokenizer-mode mistral --limit-mm-per-prompt 'image=4' --max-model-len 16384
# ```
#
# - Client:
#
# ```bash
# curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
# --header 'Content-Type: application/json' \
# --header 'Authorization: Bearer token' \
# --data '{
# "model": "mistralai/Pixtral-12B-2409",
# "messages": [
# {
# "role": "user",
# "content": [
# {"type" : "text", "text": "Describe this image in detail please."},
# {"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
# {"type" : "text", "text": "and this one as well. Answer in French."},
# {"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
# ]
# }
# ]
# }'
# ```
#
# Usage:
# python demo.py simple
# python demo.py advanced
def run_simple_demo():
model_name = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192)
# Lower max_num_seqs or max_model_len on low-VRAM GPUs.
llm = LLM(model=model_name, tokenizer_mode="mistral")
prompt = "Describe this image in one sentence."
image_url = "https://picsum.photos/id/237/200/300"
messages = [
{
"role":
"user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
],
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
def run_advanced_demo():
model_name = "mistralai/Pixtral-12B-2409"
max_img_per_msg = 5
max_tokens_per_img = 4096
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
llm = LLM(
model=model_name,
tokenizer_mode="mistral",
limit_mm_per_prompt={"image": max_img_per_msg},
max_model_len=max_img_per_msg * max_tokens_per_img,
)
prompt = "Describe the following image."
url_1 = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
url_2 = "https://picsum.photos/seed/picsum/200/300"
url_3 = "https://picsum.photos/id/32/512/512"
messages = [
{
"role":
"user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": url_1
}
},
{
"type": "image_url",
"image_url": {
"url": url_2
}
},
],
},
{
"role": "assistant",
"content": "The images show nature.",
},
{
"role": "user",
"content": "More details please and answer only in French!.",
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": url_3
}
},
],
},
]
outputs = llm.chat(messages=messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
def main():
parser = argparse.ArgumentParser(
description="Run a demo in simple or advanced mode.")
parser.add_argument(
"mode",
choices=["simple", "advanced"],
help="Specify the demo mode: 'simple' or 'advanced'",
)
args = parser.parse_args()
if args.mode == "simple":
print("Running simple demo...")
run_simple_demo()
elif args.mode == "advanced":
print("Running advanced demo...")
run_advanced_demo()
if __name__ == "__main__":
main()