forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_ps_offline_infer.py
167 lines (145 loc) · 6.05 KB
/
static_ps_offline_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from utils.static_ps.reader_helper import get_reader, get_example_num, get_file_list, get_word_num
from utils.static_ps.program_helper import get_model, get_strategy, set_dump_config
from utils.static_ps.common import YamlHelper, is_distributed_env, get_utils_file_path
import argparse
import time
import sys
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle
import os
import warnings
import logging
import paddle.fluid as fluid
__dir__ = os.path.dirname(os.path.abspath(__file__))
print(os.path.abspath(os.path.join(__dir__, '..')))
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser("PaddleRec train script")
parser.add_argument(
'-m',
'--config_yaml',
type=str,
required=True,
help='config file path')
args = parser.parse_args()
args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
yaml_helper = YamlHelper()
config = yaml_helper.load_yaml(args.config_yaml)
config["yaml_path"] = args.config_yaml
config["config_abs_dir"] = args.abs_dir
yaml_helper.print_yaml(config)
return config
class Main(object):
def __init__(self, config):
self.metrics = {}
self.config = config
self.input_data = None
self.reader = None
self.exe = None
self.train_result_dict = {}
self.train_result_dict["speed"] = []
def run(self):
fleet.init()
self.network()
if fleet.is_server():
self.run_server()
elif fleet.is_worker():
self.run_offline_infer()
fleet.stop_worker()
# self.record_result()
logger.info("Run Success, Exit.")
def network(self):
model = get_model(self.config)
self.input_data = model.create_feeds()
self.metrics = model.net(self.input_data)
self.all_vars = model.all_vars
logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
model.create_optimizer(get_strategy(self.config))
def run_server(self):
logger.info("Run Server Begin")
fleet.init_server(config.get("runner.warmup_model_path"))
fleet.run_server()
def wait_and_prepare_dataset(self):
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_use_var(self.input_data)
train_data_dir = self.config.get("runner.data_dir", "")
dataset.set_batch_size(self.config.get('runner.batch_size'))
dataset.set_thread(self.config.get('runner.thread_num'))
dataset.set_parse_ins_id(self.config.get("runner.parse_ins_id", False))
dataset.set_parse_content(
self.config.get("runner.parse_content", False))
filelist = []
# for path in train_data_dir:
# filelist += [path + "/%s" % x for x in os.listdir(path)]
for f in os.listdir(train_data_dir):
filelist.append("{}/{}".format(train_data_dir, f))
print("filelist:", filelist)
dataset.set_filelist(filelist)
self.pipe_command = "{} {} {}".format(
self.config.get("runner.pipe_command"),
config.get("yaml_path"), get_utils_file_path())
dataset.set_pipe_command(self.pipe_command)
dataset.load_into_memory()
return dataset
def run_offline_infer(self):
logger.info("Run Offline Infer Begin")
place = paddle.CPUPlace()
self.exe = paddle.static.Executor(place)
self.exe.run(paddle.static.default_startup_program())
fleet.init_worker()
init_model_path = config.get("runner.init_model_path")
fleet.load_model(init_model_path, mode=0)
logger.info("Prepare Dataset Begin.")
prepare_data_start_time = time.time()
dataset = self.wait_and_prepare_dataset()
prepare_data_end_time = time.time()
logger.info("Prepare Dataset Done, using time {} second.".format(
prepare_data_end_time - prepare_data_start_time))
infer_start_time = time.time()
self.dataset_offline_infer(dataset)
infer_end_time = time.time()
logger.info("Infer Dataset Done, using time {} second.".format(
infer_end_time - infer_start_time))
def dataset_offline_infer(self, cur_dataset):
logger.info("Infer Dataset Begin.")
fetch_info = ["Var {}".format(var_name) for var_name in self.metrics]
fetch_vars = [var for _, var in self.metrics.items()]
print_step = int(config.get("runner.print_interval"))
dump_fields_path = self.config.get("runner.dump_fields_path")
dump_fields = [var.name for var in self.all_vars]
set_dump_config(paddle.static.default_main_program(), {
"dump_fields_path": dump_fields_path,
"dump_fields": dump_fields
})
print(paddle.static.default_main_program()._fleet_opt)
self.exe.infer_from_dataset(
program=paddle.static.default_main_program(),
dataset=cur_dataset,
fetch_list=fetch_vars,
fetch_info=fetch_info,
print_period=print_step,
debug=False)
cur_dataset.release_memory()
if __name__ == "__main__":
paddle.enable_static()
config = parse_args()
# os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
benchmark_main = Main(config)
benchmark_main.run()