forked from moses-smt/giza-pp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MSBOptimization.cpp
229 lines (185 loc) · 5.74 KB
/
MSBOptimization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
Copyright (C) 1997,1998,1999,2000,2001 Franz Josef Och
mkcls - a program for making word classes .
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
#include "MSBOptimization.h"
#include <stdlib.h>
#include "ProblemTest.h"
#ifdef __GNUC__
template class Array<double>;
template class Array<ProbAndOpt>;
#endif
struct doubleInt { double a; int i; };
static int doubleintcompare(const void *p,const void *j)
{
if(((struct doubleInt *)p)->a < ((doubleInt *)j)->a)
return -1;
else if(((struct doubleInt *)p)->a == ((doubleInt *)j)->a)
return 0;
else
return 1;
}
MSBOptimization::MSBOptimization(Problem &p,int verf,int anz,Array<double> &pos,Array<double> &por)
: PopOptimization(p,verf,anz),
percentOfSteps(pos),percentOfRun(por),nachMinimierung(0)
{
}
void MSBOptimization::zInitialize()
{
PopOptimization::zInitialize();
int iterationsschritte;
double mean;
StatVar end,laufzeit,start;
zufallSeed();
solveProblem(ProblemTestVerboseMode,*originalProblem,2,-1,verfahren,mean,
end,laufzeit,start,0,&iterationsschritte);
expectedSteps=(int)(iterationsschritte);
if(verboseMode)
cout << "MSB:mean number of steps for one run: " << expectedSteps << endl;
}
double MSBOptimization::minimize(int)
{
if( initialisiert==0 )
zInitialize();
int i;
int anz=size();
int numproblems=anz;
if( verboseMode )
{
double usedSteps=0;
for(i=0;i<percentOfSteps.size();i++)
{
usedSteps+=expectedSteps*(percentOfSteps[i]-
(i==0?0:percentOfSteps[i-1]))*numproblems;
numproblems=(int)(ceil(anz*(1.0-percentOfRun[i])));
if( numproblems<1 )numproblems=1;
}
usedSteps+=expectedSteps*
(1.0-percentOfSteps[percentOfSteps.size()-1])*numproblems;
cout << "MSB: speed factor: "
<< (double)usedSteps/(expectedSteps*size()) << endl;
numproblems=anz=size();
}
for(i=0;i<percentOfSteps.size();i++)
{
int steps=(int)(expectedSteps*(percentOfSteps[i]-
(i==0?0:percentOfSteps[i-1])));
for(int a=0;a<numproblems;a++)
{
double v;
v= optimization(a)->minimize(steps);
if(verboseMode)cout << "MSB:" << i << " " << a << ":" << v << endl;
}
sort();
if(verboseMode)
cout << "MSB: best:" << problem(0)->value()
<< " worst:" << problem(numproblems-1)->value() << endl;
numproblems=(int)(anz*(1.0-percentOfRun[i]));
if( numproblems<1 )
numproblems=1;
if(verboseMode)
cout << "MSB: now i have : " << numproblems << " Problem's." << endl;
if(numproblems==1)
break;
}
assert( numproblems>0 );
for(int a=0;a<numproblems;a++)
optimization(a)->minimize(-1);
sort();
double ergebnisWert = problem(0)->value();
cout << "MSB: value:" << ergebnisWert << " (nicevalue:"
<< problem(0)->nicevalue() << ")\n";
nachMinimierung=1;
return ergebnisWert;
}
void MSBOptimization::optimizeValues(Problem &p,int verfahren)
{
int i;
struct doubleInt ri[20];
double mean;
StatVar end,laufzeit,start;
solveProblem(ProblemTestVerboseMode,p,5,-1,verfahren,mean,end,laufzeit,start);
double fivePercentSteps=(int)(laufzeit.getMean()/20.0);
double qualitaet[20][20];
for(i=0;i<20;i++)
{
Optimization *o=(Optimization *)genIterOptimizer(verfahren,p,-1);
for(int a=0;a<20;a++)
{
qualitaet[i][a]=o->minimize((int)fivePercentSteps);
cout << qualitaet[i][a] << " ";
}
ri[i].a=o->minimize(-1);
ri[i].i=i;
cout << ri[i].a << endl;
delete o;
}
qsort(ri,20,sizeof(struct doubleInt),doubleintcompare);
cout << "#Beschneidungsmatrix, welche die drei besten Laeufe erhaelt: ";
for(i=0;i<20;i++)
{
int a;
struct doubleInt v[20];
for(a=0;a<20;a++)
{ v[a].i=a;v[a].a=qualitaet[a][i];}
qsort(v,20,sizeof(struct doubleInt),doubleintcompare);
int nr=0;
for(a=0;a<20;a++)
if( v[a].i==ri[0].i || v[a].i==ri[1].i || v[a].i==ri[2].i )
nr=a;
float percent=(1.0-nr/20.0)*100.0;
if(nr==2)
percent=100.0;
cout << "# " << i << " " << (i/20.0)*100 << "% " << percent << "%\n";
}
cout << "#Beschneidungsmatrix, welche die zwei besten Laeufe erhaelt: ";
for(i=0;i<20;i++)
{
int a;
struct doubleInt v[20];
for(a=0;a<20;a++)
{ v[a].i=a;v[a].a=qualitaet[a][i];}
qsort(v,20,sizeof(struct doubleInt),doubleintcompare);
int nr=0;
for(a=0;a<20;a++)
if( v[a].i==ri[0].i || v[a].i==ri[1].i )
nr=a;
float percent=(1.0-nr/20.0)*100.0;
if(nr==1)
percent=100.0;
cout << "# " << i << " " << (i/20.0)*100 << "% " << percent << "%\n";
}
cout << "#Beschneidungsmatrix, welche den besten Lauf erhaelt: ";
for(i=0;i<20;i++)
{int a;
struct doubleInt v[20];
for(a=0;a<20;a++)
{ v[a].i=a;v[a].a=qualitaet[a][i];}
qsort(v,20,sizeof(struct doubleInt),doubleintcompare);
int nr=0;
for(a=0;a<20;a++)
if( v[a].i==ri[0].i )
nr=a;
float percent=(1.0-nr/20.0)*100.0;
if(nr==0)
percent=100.0;
cout << "# " << i << " " << (i/20.0)*100 << "% " << percent << "%\n";
}
}
Problem& MSBOptimization::bestProblem()
{
assert(nachMinimierung==1);
return *(problem(0));
}