forked from moses-smt/giza-pp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GDAOptimization.cpp
159 lines (117 loc) · 3.48 KB
/
GDAOptimization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
Copyright (C) 1997,1998,1999,2000,2001 Franz Josef Och
mkcls - a program for making word classes .
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
#include "GDAOptimization.h"
#include "ProblemTest.h"
#include <cmath>
#define GDAOptimization GDAOptimization
#define IterOptimization IterOptimization
double GDAOptimization::defaultTemperatur=1e100;
double GDAOptimization::defaultAlpha=0.001;
GDAOptimization::GDAOptimization(Problem &p,int m)
: IterOptimization(p,m) ,temperatur(defaultTemperatur),alpha(defaultAlpha)
{
}
GDAOptimization::GDAOptimization(Problem &p,double t,double a,int m)
: IterOptimization(p,m) ,temperatur(t) ,alpha(a)
{
}
GDAOptimization::GDAOptimization(GDAOptimization &o)
: IterOptimization(o)
{
temperatur = o.temperatur;
alpha = o.alpha;
gdaEndFlag = o.gdaEndFlag;
}
void GDAOptimization::zInitialize()
{
IterOptimization::zInitialize();
if(temperatur==1e100)
{
double v=problem.value();
temperatur=v;
}
assert(alpha>=0);
}
short GDAOptimization::accept(double delta)
{
if( curValue + delta < temperatur )
return 1;
else
return 0;
}
void GDAOptimization::abkuehlen()
{
double newTemperatur = temperatur - alpha*(temperatur - curValue);
if( fabs(temperatur - newTemperatur)<1e-30 )
gdaEndFlag=1;
else
gdaEndFlag=0;
temperatur = newTemperatur;
}
short GDAOptimization::end()
{
return ( endFlag>0 ) && ( gdaEndFlag );
}
void GDAOptimization::makeGraphOutput()
{
IterOptimization::makeGraphOutput();
*GraphOutput << temperatur-curValue;
}
double GDAOptimization::optimizeValue(Problem &p,int proParameter,int numParameter,int typ,
int optimierungsschritte,int print)
{
if(typ!=1)
{
cerr << "Error: wrong parameter-type in GDAOptimization::optimizeValue ("
<< typ << ")\n";
exit(1);
}
else
{
double bestPar=-1,best=1e100;
double now;
if( print )
cout << "#GDA-optimizeValues: " << numParameter<<endl;
defaultTemperatur=1e100;
for(int i=0;i<=numParameter;i++)
{
StatVar end,laufzeit,init;
defaultAlpha = pow(pow(200,1.0/numParameter),i)*0.002;
solveProblem(0,p,proParameter,optimierungsschritte,GDA_OPT,now,end,
laufzeit,init);
if( best>now )
{
best=now;
bestPar=defaultAlpha;
}
if( print )
{
cout << defaultAlpha <<" ";
cout << end.getMean() << " " << end.quantil(0.2) << " "
<< end.quantil(0.79) << " " << laufzeit.getMean() << " "
<< end.quantil(0.0) << " " << end.getSigma() << " "
<< end.getSigmaSmaller()<< " "<< end.getSigmaBigger()<< endl;
}
}
if( print )
cout << "#Parameter Mittelwert 0.2-Quantil 0.8-Quantil Laufzeit"
" Bester Sigma SigmaSmaller SigmaBigger\n";
defaultAlpha=0.03;
return bestPar;
}
return 1e100;
}