forked from yweng0828/for-Farm-ads
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SVM.py
239 lines (186 loc) · 7.89 KB
/
SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from preprocess import loadData
from preprocess import cross_10folds
from numpy import *
from sklearn import svm
# In[ ]:
def sklearn_SVM(totdata_x, totdata_y):
res = 0.0
for j in range(0, 10):
train_x, train_y, test_x, test_y = cross_10folds(totdata_x, totdata_y, j)
model = svm.SVC(kernel='linear', C=1, gamma=1)
model.fit(train_x, train_y)
right = 0
for i in range(test_x.shape[0]):
if(model.predict([test_x[i]])==test_y[i]):
right = right + 1
res += right/test_y.shape[0]
print("第 %d 次的准确率为 %f" %(j, right/test_y.shape[0]))
print("最后的准确率为 %f" %(res/10))
# In[ ]:
def selectJrand(i, m):
j=i;
while(j==i):
j = int(random.uniform(0,m))
return j
def clipAlpha(aj, H, L):
if(aj>H):
aj = H
if(L>aj):
aj = L
return aj
# In[ ]:
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
m,n = X.shape
K = mat(zeros((m,1)))
if (kTup[0]=='lin'): K = X * A.T #linear kernel
elif (kTup[0]=='rbf'):
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
else:
raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
return K
# In[ ]:
class optStruct:
def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = dataMatIn.shape[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.eCache = mat(zeros((self.m,2))) #first column is valid flag
self.K = mat(zeros((self.m,self.m)))
for i in range(self.m):
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def calcEk(oS, k):
fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej
maxK = -1; maxDeltaE = 0; Ej = 0
oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:,0].A)[0]
if (len(validEcacheList) > 1):
for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
if (k == i): continue #don't calc for i, waste of time
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else: #in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k):#after any alpha has changed update the new value in the cache
Ek = calcEk(oS, k)
oS.eCache[k] = [1,Ek]
def innerL(i, oS):
Ei = calcEk(oS, i)
if (((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0))):
j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if (L==H):
#print ("L==H");
return 0
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
if (eta >= 0):
#print ("eta>=0");
return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
updateEk(oS, j) #added this for the Ecache
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
#print ("j not moving enough");
return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
if ((0 < oS.alphas[i]) and (oS.C > oS.alphas[i])): oS.b = b1
elif ((0 < oS.alphas[j]) and (oS.C > oS.alphas[j])): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else: return 0
# In[ ]:
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iters = 0
entireSet = True; alphaPairsChanged = 0
while ((iters < maxIter) and ((alphaPairsChanged > 0) or (entireSet))):
alphaPairsChanged = 0
if (entireSet): #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
#print ("fullSet, iter: %d i:%d, pairs changed %d" % (iters,i,alphaPairsChanged))
iters += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
#print ("non-bound, iter: %d i:%d, pairs changed %d" % (iters,i,alphaPairsChanged))
iters += 1
if (entireSet): entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
#print ("iteration number: %d" % iters)
return oS.b,oS.alphas
# In[ ]:
def calcWs(alphas,dataArr,classLabels):
X = mat(dataArr); labelMat = mat(classLabels).transpose()
m,n = X.shape
w = zeros((n,1))
for i in range(m):
w += multiply(alphas[i]*labelMat[i],X[i,:].T)
return w
# In[ ]:
def test(train_x, train_y, test_x, test_y, k1=1.3):
b,alphas = smoP(train_x, train_y, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
datMat=mat(train_x); labelMat = mat(train_y).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd] #get matrix of only support vectors
labelSV = labelMat[svInd];
# print ("there are %d Support Vectors" % sVs.shape[0])
m,n = datMat.shape
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if (sign(predict)!=sign(train_y[i])): errorCount += 1
#print ("the training error rate is: %f" % (float(errorCount)/m))
errorCount = 0
datMat=mat(test_x); labelMat = mat(test_y).transpose()
m,n = datMat.shape
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if (sign(predict)!=sign(test_y[i])): errorCount += 1
#print ("the test error rate is: %f" % (float(errorCount)/m))
return (float(errorCount)/m)
# In[ ]:
def handw_SVM(totdata_x, totdata_y):
res = 0.0
for j in range(0, 10):
train_x, train_y, test_x, test_y = cross_10folds(totdata_x, totdata_y, j)
#print(train_x.shape)
#print(train_y.shape)
#print(test_x.shape)
#print(test_y.shape)
temp = test(train_x, train_y, test_x, test_y)
res = res + temp
print("第 %d 次的准确率为 %f" %(j, temp))
print("最后的准确率为 %f" %(res/10))
# In[ ]: