-
Notifications
You must be signed in to change notification settings - Fork 1
/
agent.py
150 lines (129 loc) · 4.93 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import random
import numpy as np
from collections import deque
from snake_gameai import SnakeGameAI,Direction,Point,BLOCK_SIZE
from model import Linear_QNet,QTrainer
from Helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_game = 0
self.epsilon = 0 # Randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11,256,3)
self.trainer = QTrainer(self.model,lr=LR,gamma=self.gamma)
# for n,p in self.model.named_parameters():
# print(p.device,'',n)
# self.model.to('cuda')
# for n,p in self.model.named_parameters():
# print(p.device,'',n)
# TODO: model,trainer
# state (11 Values)
#[ danger straight, danger right, danger left,
#
# direction left, direction right,
# direction up, direction down
#
# food left,food right,
# food up, food down]
def get_state(self,game):
head = game.snake[0]
point_l=Point(head.x - BLOCK_SIZE, head.y)
point_r=Point(head.x + BLOCK_SIZE, head.y)
point_u=Point(head.x, head.y - BLOCK_SIZE)
point_d=Point(head.x, head.y + BLOCK_SIZE)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger Straight
(dir_u and game.is_collision(point_u))or
(dir_d and game.is_collision(point_d))or
(dir_l and game.is_collision(point_l))or
(dir_r and game.is_collision(point_r)),
# Danger right
(dir_u and game.is_collision(point_r))or
(dir_d and game.is_collision(point_l))or
(dir_u and game.is_collision(point_u))or
(dir_d and game.is_collision(point_d)),
#Danger Left
(dir_u and game.is_collision(point_r))or
(dir_d and game.is_collision(point_l))or
(dir_r and game.is_collision(point_u))or
(dir_l and game.is_collision(point_d)),
# Move Direction
dir_l,
dir_r,
dir_u,
dir_d,
#Food Location
game.food.x < game.head.x, # food is in left
game.food.x > game.head.x, # food is in right
game.food.y < game.head.y, # food is up
game.food.y > game.head.y # food is down
]
return np.array(state,dtype=int)
def remember(self,state,action,reward,next_state,done):
self.memory.append((state,action,reward,next_state,done)) # popleft if memory exceed
def train_long_memory(self):
if (len(self.memory) > BATCH_SIZE):
mini_sample = random.sample(self.memory,BATCH_SIZE)
else:
mini_sample = self.memory
states,actions,rewards,next_states,dones = zip(*mini_sample)
self.trainer.train_step(states,actions,rewards,next_states,dones)
def train_short_memory(self,state,action,reward,next_state,done):
self.trainer.train_step(state,action,reward,next_state,done)
def get_action(self,state):
# random moves: tradeoff explotation / exploitation
self.epsilon = 80 - self.n_game
final_move = [0,0,0]
if(random.randint(0,200)<self.epsilon):
move = random.randint(0,2)
final_move[move]=1
else:
state0 = torch.tensor(state,dtype=torch.float).cuda()
prediction = self.model(state0).cuda() # prediction by model
move = torch.argmax(prediction).item()
final_move[move]=1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True:
# Get Old state
state_old = agent.get_state(game)
# get move
final_move = agent.get_action(state_old)
# perform move and get new state
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
# train short memory
agent.train_short_memory(state_old,final_move,reward,state_new,done)
#remember
agent.remember(state_old,final_move,reward,state_new,done)
if done:
# Train long memory,plot result
game.reset()
agent.n_game += 1
agent.train_long_memory()
if(score > reward): # new High score
reward = score
agent.model.save()
print('Game:',agent.n_game,'Score:',score,'Record:',record)
plot_scores.append(score)
total_score+=score
mean_score = total_score / agent.n_game
plot_mean_scores.append(mean_score)
plot(plot_scores,plot_mean_scores)
if(__name__=="__main__"):
train()