|
| 1 | +Examples: k-Wave-Python Step-by-Step |
| 2 | +======================= |
| 3 | + |
| 4 | +The k-Wave Python examples are organized to help you progress from basic wave physics to advanced applications. Each example demonstrates the four-component framework (Grid, Medium, Source, Sensor) with increasing complexity. |
| 5 | + |
| 6 | +Start with the :doc:`get_started/first_simulation` tutorial, then follow this suggested learning path: |
| 7 | + |
| 8 | +Basic Wave Propagation (IVP - Initial Value Problems) |
| 9 | +----------------------------------------------------- |
| 10 | + |
| 11 | +**Start Here**: Learn fundamental wave physics using initial pressure distributions (the simplest source type). |
| 12 | + |
| 13 | +.. list-table:: |
| 14 | + :header-rows: 1 |
| 15 | + :widths: 40 40 20 |
| 16 | + |
| 17 | + * - Example |
| 18 | + - Core Concept |
| 19 | + - Topics |
| 20 | + * - :ghdir:`examples/ivp_photoacoustic_waveforms/` |
| 21 | + - 2D vs 3D wave propagation physics |
| 22 | + - **IVP** • Wave spreading • Compact support |
| 23 | + |
| 24 | +Simple Transducers & Sources |
| 25 | +----------------------------- |
| 26 | + |
| 27 | +**Next Step**: Introduction to time-varying sources and practical transducer modeling. |
| 28 | + |
| 29 | +.. list-table:: |
| 30 | + :header-rows: 1 |
| 31 | + :widths: 40 40 20 |
| 32 | + |
| 33 | + * - Example |
| 34 | + - Core Concept |
| 35 | + - Topics |
| 36 | + * - :ghdir:`examples/us_defining_transducer/` |
| 37 | + - Basic ultrasound transducer setup |
| 38 | + - **US** • Transducer basics • Time-varying sources |
| 39 | + * - :ghdir:`examples/at_circular_piston_3D/` |
| 40 | + - Simple focused geometry |
| 41 | + - **AT** • 3D focusing • Geometric sources |
| 42 | + * - :ghdir:`examples/at_circular_piston_AS/` |
| 43 | + - Computational efficiency with symmetry |
| 44 | + - **AT** • Axisymmetric • Computational optimization |
| 45 | + |
| 46 | +Medical Imaging Applications |
| 47 | +---------------------------- |
| 48 | + |
| 49 | +**Practical Applications**: See how basic concepts combine into real-world medical imaging systems. |
| 50 | + |
| 51 | +.. list-table:: |
| 52 | + :header-rows: 1 |
| 53 | + :widths: 40 40 20 |
| 54 | + |
| 55 | + * - Example |
| 56 | + - Application |
| 57 | + - Topics |
| 58 | + * - :ghdir:`examples/us_beam_patterns/` |
| 59 | + - Understanding acoustic beam formation |
| 60 | + - **US** • Beam focusing • Field patterns |
| 61 | + * - :ghdir:`examples/us_bmode_linear_transducer/` |
| 62 | + - Complete ultrasound imaging pipeline |
| 63 | + - **US** • Medical imaging • Signal processing |
| 64 | + * - :ghdir:`examples/pr_2D_FFT_line_sensor/` |
| 65 | + - Photoacoustic image reconstruction |
| 66 | + - **PR** • Image reconstruction • FFT methods |
| 67 | + * - :ghdir:`examples/pr_2D_TR_line_sensor/` |
| 68 | + - Alternative reconstruction approach |
| 69 | + - **PR** • Time reversal • Reconstruction |
| 70 | + |
| 71 | +Advanced Transducer Modeling (AT - Array Transducers) |
| 72 | +----------------------------------------------------- |
| 73 | + |
| 74 | +**Complex Geometries**: Learn sophisticated techniques for modeling complex transducer arrays using Cartesian space methods. |
| 75 | + |
| 76 | +.. list-table:: |
| 77 | + :header-rows: 1 |
| 78 | + :widths: 40 40 20 |
| 79 | + |
| 80 | + * - Example |
| 81 | + - Advanced Technique |
| 82 | + - Topics |
| 83 | + * - :ghdir:`examples/at_array_as_source/` |
| 84 | + - kWaveArray for complex geometries |
| 85 | + - **AT** • Array modeling • Anti-aliasing |
| 86 | + * - :ghdir:`examples/at_array_as_sensor/` |
| 87 | + - Complex sensor array geometries |
| 88 | + - **AT** • Sensor arrays • Flexible positioning |
| 89 | + * - :ghdir:`examples/at_linear_array_transducer/` |
| 90 | + - Multi-element linear arrays |
| 91 | + - **AT** • Linear arrays • Element spacing |
| 92 | + * - :ghdir:`examples/at_focused_bowl_3D/` |
| 93 | + - 3D focused ultrasound therapy |
| 94 | + - **AT** • Therapeutic US • 3D focusing |
| 95 | + * - :ghdir:`examples/at_focused_annular_array_3D/` |
| 96 | + - Multi-element focused systems |
| 97 | + - **AT** • Annular arrays • Complex focusing |
| 98 | + |
| 99 | +Advanced Imaging & Reconstruction (PR - Pressure/Photoacoustic Reconstruction) |
| 100 | +------------------------------------------------------------------------------- |
| 101 | + |
| 102 | +**3D Reconstruction**: Advanced reconstruction techniques for photoacoustic and pressure field imaging. |
| 103 | + |
| 104 | +.. list-table:: |
| 105 | + :header-rows: 1 |
| 106 | + :widths: 40 40 20 |
| 107 | + |
| 108 | + * - Example |
| 109 | + - Reconstruction Method |
| 110 | + - Topics |
| 111 | + * - :ghdir:`examples/pr_3D_FFT_planar_sensor/` |
| 112 | + - 3D FFT-based reconstruction |
| 113 | + - **PR** • 3D imaging • Planar arrays |
| 114 | + * - :ghdir:`examples/pr_3D_TR_planar_sensor/` |
| 115 | + - 3D time reversal reconstruction |
| 116 | + - **PR** • 3D time reversal • Volumetric imaging |
| 117 | + * - :ghdir:`examples/us_bmode_phased_array/` |
| 118 | + - Advanced ultrasound beamforming |
| 119 | + - **US** • Phased arrays • Electronic steering |
| 120 | + |
| 121 | +Sensor Physics & Directivity (SD - Sensor Directivity) |
| 122 | +------------------------------------------------------ |
| 123 | + |
| 124 | +**Sensor Modeling**: Understanding how sensor size, shape, and directivity affect measurements. |
| 125 | + |
| 126 | +.. list-table:: |
| 127 | + :header-rows: 1 |
| 128 | + :widths: 40 40 20 |
| 129 | + |
| 130 | + * - Example |
| 131 | + - Physics Concept |
| 132 | + - Topics |
| 133 | + * - :ghdir:`examples/sd_directivity_modelling_2D/` |
| 134 | + - How sensor size affects measurements |
| 135 | + - **SD** • Directivity • Finite sensor size |
| 136 | + * - :ghdir:`examples/sd_focussed_detector_2D/` |
| 137 | + - Directional sensor sensitivity |
| 138 | + - **SD** • Focused detection • Sensor design |
| 139 | + * - :ghdir:`examples/sd_focussed_detector_3D/` |
| 140 | + - 3D focused sensor modeling |
| 141 | + - **SD** • 3D detection • Sensor focusing |
| 142 | + |
| 143 | +Computational Optimization (NA - Numerical Analysis) |
| 144 | +---------------------------------------------------- |
| 145 | + |
| 146 | +**Advanced Numerics**: Optimize simulations and understand computational aspects. |
| 147 | + |
| 148 | +.. list-table:: |
| 149 | + :header-rows: 1 |
| 150 | + :widths: 40 40 20 |
| 151 | + |
| 152 | + * - Example |
| 153 | + - Optimization Topic |
| 154 | + - Topics |
| 155 | + * - :ghdir:`examples/na_controlling_the_pml/` |
| 156 | + - Boundary conditions and efficiency |
| 157 | + - **NA** • PML boundaries • Computational domains |
| 158 | + |
| 159 | +Understanding the Prefixes |
| 160 | +-------------------------- |
| 161 | + |
| 162 | +- **IVP** = Initial Value Problems (wave propagation from initial pressure) |
| 163 | +- **US** = Ultrasound (medical and therapeutic ultrasound applications) |
| 164 | +- **AT** = Array Transducers (complex geometries using Cartesian space methods) |
| 165 | +- **PR** = Pressure/Photoacoustic Reconstruction (image reconstruction techniques) |
| 166 | +- **SD** = Sensor Directivity (sensor physics and measurement effects) |
| 167 | +- **NA** = Numerical Analysis (computational optimization and methods) |
| 168 | + |
| 169 | +Learning Strategy |
| 170 | +----------------- |
| 171 | + |
| 172 | +1. **Start with IVP**: Understand basic wave physics |
| 173 | +2. **Move to simple US/AT**: Learn transducer basics |
| 174 | +3. **Apply to imaging**: See concepts in real applications (US, PR) |
| 175 | +4. **Master advanced AT**: Handle complex geometries |
| 176 | +5. **Understand sensors**: Learn about measurement physics (SD) |
| 177 | +6. **Optimize**: Improve computational efficiency (NA) |
| 178 | + |
| 179 | +Each example builds on the four-component framework, but with increasing sophistication in how the components are configured and used. |
0 commit comments