forked from Linear95/bert-intent-slot-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
130 lines (94 loc) · 4.45 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import json
from tqdm import tqdm
from torch.utils.data import Dataset
from transformers import BertTokenizer
from labeldict import LabelDict
def get_slot_labels(text, slots, tokenizer):
'''
text : a string of text
slots : a dict of {slot_label: [text_pattern1, text_pattern2, ..., text_patternK]}
'''
text_tokens = tokenizer.tokenize(text)
slot_labels = []
i = 0
while i < len(text_tokens):
slot_matched = False
for slot_label, slot_values in slots.items():
if slot_matched:
break
if isinstance(slot_values, str): # if slots is {slot_label: slot_value}
slot_values = [slot_values]
for text_pattern in slot_values:
pattern_tokens = tokenizer.tokenize(text_pattern)
if "".join(text_tokens[i: i+len(pattern_tokens)]) == "".join(pattern_tokens):
slot_matched = True
slot_labels.extend(['B_'+slot_label] + ['I_'+slot_label] * (len(pattern_tokens) - 1))
i += len(pattern_tokens)
break
if not slot_matched:
slot_labels.append('[O]')
i += 1
return slot_labels
class IntentSlotDataset(Dataset):
def __init__(self, raw_data, intent_labels, slot_labels, tokenizer):
super().__init__()
#self.tokenizer = tokenizer
self.intent_label_dict = LabelDict(intent_labels)
self.slot_label_dict = LabelDict(slot_labels)
self.intent_label_num = len(self.intent_label_dict)
self.slot_label_num = len(self.slot_label_dict)
self.raw_data = raw_data
self.data = []
for item in tqdm(raw_data):
slot_labels = get_slot_labels(item['text'], item['slots'], tokenizer)
slot_ids = self.slot_label_dict.encode(['[PAD]'] + slot_labels + ['[PAD]'])
intent_id = self.intent_label_dict[item['intent']]
input_ids = tokenizer.encode(item['text'])
assert len(input_ids) == len(slot_ids), "slot label seq has different length than input seq"
self.data.append({
"input_ids": input_ids,
"slot_ids": slot_ids,
"intent_id": intent_id
}
)
print('Finished processing all data.')
def batch_collate_fn(batch_data):
batch_intent_ids = [item['intent_id'] for item in batch_data]
max_seq_length = max([len(item['input_ids']) for item in batch_data])
batch_input_ids = [item['input_ids'] + [0] * (max_seq_length - len(item['input_ids']))
for item in batch_data]
batch_slot_ids = [item['slot_ids'] + [0] * (max_seq_length - len(item['slot_ids']))
for item in batch_data]
return batch_input_ids, batch_intent_ids, batch_slot_ids
#self.batch_collate_func = lambda x: batch_collate_func(x)
self.batch_collate_fn = batch_collate_fn
@classmethod
def load_from_path(cls, data_path, intent_label_path, slot_label_path, **kwargs):
with open(data_path, 'r') as f:
raw_data = json.load(f)
# with open(intent_template_path, 'r') as f:
# intent_templates = json.load(f)
# intent_labels = [item['intent'] for item in intent_templates]
# slot_labels = [label for label in item['slots'] for item in intent_templates]
with open(intent_label_path, 'r') as f:
intent_labels = f.read().strip('\n').split('\n')
with open(slot_label_path, 'r') as f:
slot_labels = f.read().strip('\n').split('\n')
return cls(raw_data, intent_labels, slot_labels, **kwargs)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
if __name__ == '__main__':
data_path = '/home/pengyu/workspace/intent-detect-core/data/intent_train_data.json'
intent_label_path = 'data/intent_labels.txt'
slot_label_path = 'data/slot_labels.txt'
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
dataset = IntentSlotDataset.load_from_path(
data_path=data_path,
intent_label_path=intent_label_path,
slot_label_path=slot_label_path,
tokenizer=tokenizer,
)
print(dataset[0])
print(dataset.raw_data[0])