-
Notifications
You must be signed in to change notification settings - Fork 188
/
main_umap.py
71 lines (55 loc) · 2.34 KB
/
main_umap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2021 solo-learn development team.
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies
# or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
# FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import json
import os
from pathlib import Path
from solo.args.setup import parse_args_umap
from solo.methods import METHODS
from solo.utils.auto_umap import OfflineUMAP
from solo.utils.classification_dataloader import prepare_data
def main():
args = parse_args_umap()
# build paths
ckpt_dir = Path(args.pretrained_checkpoint_dir)
args_path = ckpt_dir / "args.json"
ckpt_path = [ckpt_dir / ckpt for ckpt in os.listdir(ckpt_dir) if ckpt.endswith(".ckpt")][0]
# load arguments
with open(args_path) as f:
method_args = json.load(f)
# build the model
model = (
METHODS[method_args["method"]]
.load_from_checkpoint(ckpt_path, strict=False, **method_args)
.backbone
)
model.cuda()
# prepare data
train_loader, val_loader = prepare_data(
args.dataset,
data_dir=args.data_dir,
train_dir=args.train_dir,
val_dir=args.val_dir,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
umap = OfflineUMAP()
# move model to the gpu
device = "cuda:0"
model = model.to(device)
umap.plot(device, model, train_loader, "im100_train_umap.pdf")
umap.plot(device, model, val_loader, "im100_val_umap.pdf")
if __name__ == "__main__":
main()