-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedium-medium.jl
227 lines (178 loc) · 5.57 KB
/
medium-medium.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# run with > julia -p 7
@everywhere begin
using DataFrames
using DataArrays
# medium policy code transition matrix
#using JLD
#println("medium program worker ",myid(), "starting")
infile="medium.csv"
f = open(infile)
df = readtable(infile)
nodes=names(df)
close(f)
transitions = Dict{Tuple{Int64,Int64,Int64},Tuple{Float64, Float64}}()
uniq=unique(df)
state_arr=by(uniq,[:s],nrow)[1]
sorted_state=sort(state_arr)
state_set=Set{Int64}(state_arr)
num_states=size(state_arr)[1]
state_dict = Dict(zip(state_arr, 1:num_states))
# assumes rewards are always the same for every (s,a,sp) direction vector
# NOTE: nrow() function in DataFrames is totally broken for large datasets
k=1
for s in state_arr #FIXME
# for s in state_arr[1:10]
subtable_s = uniq[ uniq[:s] .== s, :]
for r_frame in eachrow(subtable_s)
a = r_frame[:a]
sp = r_frame[:sp]
reward = r_frame[:r]
ways=size( df[ (df[:s] .== s) & (df[:a].== a) & (df[:sp].== sp), :])[1]
total_ways=size( df[ (df[:s] .== s) & (df[:a].== a), :])[1]
transitions[(s,a,sp)]=((ways/total_ways),reward)
end
k=k+1
if (k%1000) == 0
println(" processing state ",k, " of ",num_states)
end
end
println("Transition matrix read")
# precompute all lookup tables
# uncomment the below in production!
subtable_s = Dict{Int64,DataFrames.DataFrame}()
subtable_s_a = Dict{Tuple{Int64,Int64},DataFrames.DataFrame}()
#
for s in state_arr
subtable_s[s]= uniq[ uniq[:s] .== s, :]
for a in by(subtable_s[s],[:s,:a],nrow)[:a]
subtable_s_a[(s,a)] = subtable_s[s][ subtable_s[s][:a] .== a, :]
end
end
println("Transition frames precomputed")
# main program for policy computation
function myrange(q::SharedArray)
idx = indexpids(q)
if idx == 0
# This worker is not assigned a piece
return 1:0
end
nchunks = length(procs(q))
splits = [round(Int, s) for s in linspace(0,size(q,1),nchunks+1)]
splits[idx]+1:splits[idx+1]
end
function compute(iterations, gamma, total_states, U, Fin)
range=myrange(U)
println("got index: ", range)
#for i in 1:iterations
i=1
while true
for s in state_arr[range]
results=Array{Array{Float64,2},1}()
for a in by(subtable_s[s],[:s,:a],nrow)[:a]
expected_reward=0.0
for sp in subtable_s_a[(s,a)][:sp]
probability=transitions[(s,a,sp)][1]
reward=transitions[(s,a,sp)][2]
index_sp = 0 # infer next state by local search
if in(sp, state_set) # in our model already
index_sp=state_dict[sp]
else
# need to interpolate
index_sp = findfirst(x -> x>sp, sorted_state)
if (index_sp == 0)
index_sp = findfirst(x -> x<sp, sorted_state)
end
if (index_sp == 0)
println(myid(),": index ", index_sp, " cannot be inferred")
index_sp = 1
end
end
expected_reward += probability*(reward+gamma*U[index_sp,1])
end
push!(results, [expected_reward a])
end
best_utility=-Inf
best_action=rand(1:7)
for policy in results
if policy[1] >= best_utility
best_utility=policy[1]
best_action=policy[2]
end
end
index_s= state_dict[s] # this index should always exist
U[index_s, 1]=best_utility
U[index_s, 2]=best_action
end
#if (i%10) == 0
if (i<=iterations)
println("iteration: ", i, " out of ", iterations)
else
println("roll: ", i)
end
#end
if i==iterations
Fin[myid()]=1
println("sent fin, rolling free")
end
if Fin[1]==1
break
end
i=i+1
end #while
end #function
end
# continue main program
U = SharedArray(Float64, (length(state_arr),2))
Fin = SharedArray(Int64, nprocs())
fill!(U,0)
iterations=10000
gamma=1.0
total_states=50000
converge_timeout=600
function waiter(Fin)
println("started fin waiter")
Control = 0
while true
sleep(converge_timeout)
if countnz(Fin)==nworkers()
Fin[1]=1
println("stopping workers, saving policy")
break
end
Current = hash(U[:,2])
if (Control == Current)
println("No changes for ", converge_timeout, " seconds, converged!")
Fin[1]=1
break
end
Control = Current
println("=> Convergence: policy changed. Recheck in ", converge_timeout, " seconds")
end
end
@sync begin
for p in procs(U)
@async begin
remotecall_wait(compute, p, iterations, gamma, total_states, U, Fin)
end
end
@async waiter(Fin)
end
f=open("medium-exp.policy","w")
optimal_policy=U[:,2]
policy_dict=Dict(zip(state_arr, optimal_policy))
for j in 1:total_states
if (!in(j,state_set)) # state with no information
copyindex=findfirst(x -> x>j, sorted_state)
if copyindex==0
copyindex=findfirst(x -> x<j, sorted_state)
end
if copyindex==0
copyindex=1
end
@printf(f, "%s\n", convert(Int64,policy_dict[state_arr[copyindex]]))
else
@printf(f, "%s\n", convert(Int64,policy_dict[j]))
end
end
println("medium policy written")
close(f)