Data Augmentation levels:
- level 0: only small rotation and resize
- level 1a: the LSTR augmentations
- level 1b: the BézierLaneNet augmentations
- level 1c: the LaneATT augmentations
method | backbone | data augmentation |
resolution | mixed precision? | dataset | metric | average | best | training time (2080 Ti) |
---|---|---|---|---|---|---|---|---|---|
Baseline | VGG16 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 93.79% | 93.94% | 1.5h |
Baseline | ResNet18 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 94.18% | 94.25% | 0.7h |
Baseline | ResNet34 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.23% | 95.31% | 1.1h |
Baseline | ResNet34 | level 1a | 360 x 640 | no | TuSimple | Accuracy | 92.14% | 92.68% | 1.2h* |
Baseline | ResNet50 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.07% | 95.12% | 1.5h |
Baseline | ResNet101 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.15% | 95.19% | 2.6h |
Baseline | ERFNet | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 96.02% | 96.04% | 0.8h |
Baseline | ERFNet | level 1a | 360 x 640 | no | TuSimple | Accuracy | 94.21% | 94.37% | 0.9h* |
Baseline | ENet# | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.55% | 95.61% | 1h+ |
Baseline | MobileNetV2 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 93.98% | 94.07% | 0.5h |
Baseline | MobileNetV3-Large | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 92.09% | 92.18% | 0.5h |
SCNN | VGG16 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.01% | 95.17% | 2h |
SCNN | ResNet18 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 94.69% | 94.77% | 1.2h |
SCNN | ResNet34 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.19% | 95.25% | 1.6h |
SCNN | ResNet34 | level 1a | 360 x 640 | no | TuSimple | Accuracy | 92.62% | 93.42% | 1.7h* |
SCNN | ResNet50 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.43% | 95.56% | 2.4h |
SCNN | ResNet101 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 95.56% | 95.69% | 3.5h |
SCNN | ERFNet | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 96.18% | 96.29% | 1.6h |
SCNN | ERFNet | level 1a | 360 x 640 | no | TuSimple | Accuracy | 95.00% | 95.26% | 1.7h* |
RESA | ResNet18 | level 0 | 360 x 640 | no | TuSimple | Accuracy | 94.64% | 95.24% | 1.2h* |
RESA | ResNet34 | level 0 | 360 x 640 | no | TuSimple | Accuracy | 94.84% | 95.15% | 1.6h* |
RESA | ResNet50 | level 0 | 360 x 640 | no | TuSimple | Accuracy | 95.34% | 95.50% | 2.4h* |
RESA | ResNet101 | level 0 | 360 x 640 | no | TuSimple | Accuracy | 95.24% | 95.56% | 3.5h* |
RESA | ERFNet | level 0 | 360 x 640 | no | TuSimple | Accuracy | 95.73% | 95.76% | 1.7h |
RESA | MobileNetV2 | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 94.61% | 95.21% | 0.7h |
RESA | MobileNetV3-Large | level 0 | 360 x 640 | yes | TuSimple | Accuracy | 94.56% | 94.99% | 0.7h |
LSTR | ResNet18s# | level 0 | 360 x 640 | no | TuSimple | Accuracy | 91.91% | 92.40% | 14.2h |
LSTR | ResNet18s# | level 1a | 360 x 640 | no | TuSimple | Accuracy | 94.91% | 95.06% | 15.5h |
BézierLaneNet | ResNet18 | level 1b | 360 x 640 | no | TuSimple | Accuracy | 95.01% | 95.41% | 5.5h |
BézierLaneNet | ResNet34 | level 1b | 360 x 640 | no | TuSimple | Accuracy | 95.17% | 95.65% | 6.5h |
Baseline | VGG16 | level 0 | 288 x 800 | yes | CULane | F1 | 65.93 | 66.09 | 9.3h |
Baseline | ResNet18 | level 0 | 288 x 800 | yes | CULane | F1 | 65.19 | 65.30 | 5.3h |
Baseline | ResNet34 | level 0 | 288 x 800 | yes | CULane | F1 | 69.82 | 69.92 | 7.3h |
Baseline | ResNet50 | level 0 | 288 x 800 | yes | CULane | F1 | 68.31 | 68.48 | 12.4h |
Baseline | ResNet101 | level 0 | 288 x 800 | yes | CULane | F1 | 71.29 | 71.37 | 20.0h |
Baseline | ERFNet | level 0 | 288 x 800 | yes | CULane | F1 | 73.40 | 73.49 | 6h |
Baseline | ENet# | level 0 | 288 x 800 | yes | CULane | F1 | 69.39 | 69.90 | 6.4h+ |
Baseline | MobileNetV2 | level 0 | 288 x 800 | yes | CULane | F1 | 67.34 | 67.41 | 3.0h |
Baseline | MobileNetV3-Large | level 0 | 288 x 800 | yes | CULane | F1 | 68.27 | 68.42 | 3.0h |
Baseline | RepVGG-A0 | level 0 | 288 x 800 | yes | CULane | F1 | 70.22 | 70.56 | 3.3h** |
Baseline | RepVGG-A1 | level 0 | 288 x 800 | yes | CULane | F1 | 70.73 | 70.85 | 4.1h** |
Baseline | RepVGG-B0 | level 0 | 288 x 800 | yes | CULane | F1 | 71.77 | 71.81 | 6.2h** |
Baseline | RepVGG-B1g2 | level 0 | 288 x 800 | yes | CULane | F1 | 72.08 | 72.20 | 10.0h** |
Baseline | RepVGG-B2 | level 0 | 288 x 800 | yes | CULane | F1 | 72.24 | 72.33 | 13.2h** |
Baseline | Swin-Tiny | level 0 | 288 x 800 | yes | CULane | F1 | 69.75 | 69.90 | 12.1h** |
SCNN | VGG16 | level 0 | 288 x 800 | yes | CULane | F1 | 74.02 | 74.29 | 12.8h |
SCNN | ResNet18 | level 0 | 288 x 800 | yes | CULane | F1 | 71.94 | 72.19 | 8.0h |
SCNN | ResNet34 | level 0 | 288 x 800 | yes | CULane | F1 | 72.44 | 72.70 | 10.7h |
SCNN | ResNet50 | level 0 | 288 x 800 | yes | CULane | F1 | 72.95 | 73.03 | 17.9h |
SCNN | ResNet101 | level 0 | 288 x 800 | yes | CULane | F1 | 73.29 | 73.58 | 25.7h |
SCNN | ERFNet | level 0 | 288 x 800 | yes | CULane | F1 | 73.85 | 74.03 | 11.3h |
SCNN | RepVGG-A1 | level 0 | 288 x 800 | yes | CULane | F1 | 72.88 | 72.89 | 5.7h** |
RESA | ResNet18 | level 0 | 288 x 800 | no | CULane | F1 | 72.76 | 72.90 | 8.0h* |
RESA | ResNet34 | level 0 | 288 x 800 | no | CULane | F1 | 73.29 | 73.66 | 10.7h* |
RESA | ResNet50 | level 0 | 288 x 800 | no | CULane | F1 | 73.99 | 74.19 | 17.9h* |
RESA | ResNet101 | level 0 | 288 x 800 | no | CULane | F1 | 73.96 | 74.04 | 25.7h* |
RESA | ERFNet | level 0 | 288 x 800 | no | CULane | F1 | 73.28 | 73.32 | 9.1h |
RESA | MobileNetV2 | level 0 | 288 x 800 | yes | CULane | F1 | 72.28 | 72.36 | 4.6h |
RESA | MobileNetV3-Large | level 0 | 288 x 800 | yes | CULane | F1 | 70.23 | 70.61 | 4.6h |
LSTR | ResNet18s-2X# | level 0 | 288 x 800 | no | CULane | F1 | 36.27 | 39.77 | 28.5h* |
LSTR | ResNet18s-2X# | level 1a | 288 x 800 | no | CULane | F1 | 68.35 | 68.72 | 31.5h* |
LSTR | ResNet34 | level 1a | 288 x 800 | no | CULane | F1 | 72.17 | 72.48 | 45.0h* |
LaneATT | ResNet18 | level 1c | 360 x 640 | no | CULane | F1 | 74.71 | 74.87 | 3.6h** |
LaneATT | ResNet34 | level 1c | 360 x 640 | no | CULane | F1 | 75.76 | 75.82 | 4.0h** |
BézierLaneNet | ResNet18 | level 1b | 288 x 800 | yes | CULane | F1 | 73.36 | 73.67 | 9.9h |
BézierLaneNet | ResNet34 | level 1b | 288 x 800 | yes | CULane | F1 | 75.30 | 75.57 | 11.0h |
Baseline | ERFNet | level 0 | 360 x 640 | yes | LLAMAS | F1 | 95.94 | 96.13 | 10.9h+ |
Baseline | VGG16 | level 0 | 360 x 640 | yes | LLAMAS | F1 | 95.05 | 95.11 | 9.3h |
Baseline | ResNet34 | level 0 | 360 x 640 | yes | LLAMAS | F1 | 95.90 | 95.91 | 7.0h |
SCNN | ERFNet | level 0 | 360 x 640 | yes | LLAMAS | F1 | 95.89 | 95.94 | 14.2h+ |
SCNN | VGG16 | level 0 | 360 x 640 | yes | LLAMAS | F1 | 96.39 | 96.42 | 12.5h |
SCNN | ResNet34 | level 0 | 360 x 640 | yes | LLAMAS | F1 | 96.17 | 96.19 | 10.1h |
BézierLaneNet | ResNet18 | level 1b | 360 x 640 | yes | LLAMAS | F1 | 95.42 | 95.52 | 5.5h |
BézierLaneNet | ResNet34 | level 1b | 360 x 640 | yes | LLAMAS | F1 | 96.04 | 96.11 | 6.1h |
All performance is measured with ImageNet pre-training and reported as 3 times average/best on test set.
The test set annotations of LLAMAS are not public, so we provide validation set result in this table.
+ Measured on a single GTX 1080Ti.
# No pre-training.
* Trained on a 1080 Ti cluster, with CUDA 9.0 PyTorch 1.3, training time is estimated as: single 2080 Ti, mixed precision.
** Trained on two 2080ti.
method | backbone | data augmentation |
accuracy | FP | FN | |
---|---|---|---|---|---|---|
Baseline | VGG16 | level 0 | 93.94% | 0.0998 | 0.1021 | model | shell |
Baseline | ResNet18 | level 0 | 94.25% | 0.0881 | 0.0894 | model | shell |
Baseline | ResNet34 | level 0 | 95.31% | 0.0640 | 0.0622 | model | shell |
Baseline | ResNet34 | level 1a | 92.68% | 0.1073 | 0.1221 | model | shell |
Baseline | ResNet50 | level 0 | 95.12% | 0.0649 | 0.0653 | model | shell |
Baseline | ResNet101 | level 0 | 95.19% | 0.0619 | 0.0620 | model | shell |
Baseline | ERFNet | level 0 | 96.04% | 0.0591 | 0.0365 | model | shell |
Baseline | ERFNet | level 1a | 94.37% | 0.0846 | 0.0770 | model | shell |
Baseline | ENet | level 0 | 95.61% | 0.0655 | 0.0503 | model | shell |
Baseline | MobileNetV2 | level 0 | 94.07% | 0.0792 | 0.0866 | model | shell |
Baseline | MobileNetV3-Large | level 0 | 92.18% | 0.1149 | 0.1322 | model | shell |
SCNN | VGG16 | level 0 | 95.17% | 0.0637 | 0.0622 | model | shell |
SCNN | ResNet18 | level 0 | 94.77% | 0.0753 | 0.0737 | model | shell |
SCNN | ResNet34 | level 0 | 95.25% | 0.0627 | 0.0634 | model | shell |
SCNN | ResNet34 | level 1a | 93.42% | 0.0868 | 0.0998 | model | shell |
SCNN | ResNet50 | level 0 | 95.56% | 0.0561 | 0.0556 | model | shell |
SCNN | ResNet101 | level 0 | 95.69% | 0.0519 | 0.0504 | model | shell |
SCNN | ERFNet | level 0 | 96.29% | 0.0470 | 0.0318 | model | shell |
SCNN | ERFNet | level 1a | 95.26% | 0.0625 | 0.0512 | model | shell |
RESA | ResNet18 | level 0 | 95.24% | 0.0685 | 0.0571 | model | shell |
RESA | ResNet34 | level 0 | 95.15% | 0.0690 | 0.0592 | model | shell |
RESA | ResNet50 | level 0 | 95.50% | 0.0550 | 0.0507 | model | shell |
RESA | ResNet101 | level 0 | 95.56% | 0.0580 | 0.0513 | model | shell |
RESA | ERFNet | level 0 | 95.76% | 0.0648 | 0.0439 | model | shell |
RESA | MobileNetV2 | level 0 | 95.21% | 0.0642 | 0.0552 | model | shell |
RESA | MobileNetV3-Large | level 0 | 94.99% | 0.0841 | 0.0597 | model | shell |
LSTR | ResNet18s | level 1a | 95.06% | 0.0486 | 0.0418 | model | shell |
LSTR | ResNet18s | level 0 | 92.40% | 0.1289 | 0.1127 | model | shell |
BézierLaneNet | ResNet18 | level 1b | 95.41% | 0.0531 | 0.0458 | model | shell |
BézierLaneNet | ResNet34 | level 1b | 95.65% | 0.0513 | 0.0386 | model | shell |
method | backbone | data augmentation |
normal | crowded | night | no line | shadow | arrow | dazzle light |
curve | crossroad | total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | VGG16 | level 0 | 85.51 | 64.05 | 61.14 | 35.96 | 59.76 | 78.43 | 53.25 | 62.16 | 2224 | 66.09 | model | shell |
Baseline | ResNet18 | level 0 | 85.45 | 62.63 | 61.04 | 33.88 | 51.72 | 78.15 | 53.05 | 59.70 | 1915 | 65.30 | model | shell |
Baseline | ResNet34 | level 0 | 89.46 | 66.66 | 65.38 | 40.43 | 62.17 | 83.18 | 58.51 | 63.00 | 1713 | 69.92 | model | shell |
Baseline | ResNet50 | level 0 | 88.15 | 65.73 | 63.74 | 37.96 | 62.59 | 81.68 | 59.47 | 64.01 | 2046 | 68.48 | model | shell |
Baseline | ResNet101 | level 0 | 90.11 | 67.89 | 67.01 | 43.10 | 70.56 | 85.09 | 61.77 | 65.47 | 1883 | 71.37 | model | shell |
Baseline | ERFNet | level 0 | 91.48 | 71.27 | 68.09 | 46.76 | 74.47 | 86.09 | 64.18 | 66.89 | 2102 | 73.49 | model | shell |
Baseline | ENet | level 0 | 89.26 | 68.15 | 62.99 | 42.43 | 68.59 | 83.10 | 58.49 | 63.23 | 2464 | 69.90 | model | shell |
Baseline | MobileNetV2 | level 0 | 87.82 | 65.09 | 61.46 | 38.15 | 57.34 | 79.29 | 55.89 | 60.29 | 2114 | 67.41 | model | shell |
Baseline | MobileNetV3-Large | level 0 | 88.20 | 66.33 | 63.08 | 40.41 | 56.15 | 79.81 | 59.15 | 61.96 | 2304 | 68.42 | model | shell |
Baseline | RepVGG-A0 | level 0 | 89.74 | 67.68 | 65.21 | 42.51 | 67.85 | 83.13 | 60.86 | 63.63 | 2011 | 70.56 | model | shell |
Baseline | RepVGG-A1 | level 0 | 89.92 | 68.60 | 65.43 | 41.99 | 66.64 | 84.78 | 61.38 | 64.85 | 2127 | 70.85 | model | shell |
Baseline | RepVGG-B0 | level 0 | 90.86 | 69.32 | 66.68 | 43.53 | 67.83 | 85.43 | 59.80 | 66.47 | 2189 | 71.81 | model | shell |
Baseline | RepVGG-B1g2 | level 0 | 90.85 | 69.31 | 67.94 | 43.81 | 68.45 | 85.85 | 60.64 | 67.69 | 2092 | 72.20 | model | shell |
Baseline | RepVGG-B2 | level 0 | 90.82 | 69.84 | 67.65 | 43.02 | 72.08 | 85.76 | 61.75 | 67.67 | 2000 | 72.33 | model | shell |
Baseline | Swin-Tiny | level 0 | 89.55 | 68.36 | 63.56 | 42.53 | 61.96 | 82.64 | 60.81 | 65.21 | 2813 | 69.90 | model | shell |
SCNN | VGG16 | level 0 | 92.02 | 72.31 | 69.13 | 46.01 | 76.37 | 87.71 | 64.68 | 68.96 | 1924 | 74.29 | model | shell |
SCNN | ResNet18 | level 0 | 90.98 | 70.17 | 66.54 | 43.12 | 66.31 | 85.62 | 62.20 | 65.58 | 1808 | 72.19 | model | shell |
SCNN | ResNet34 | level 0 | 91.06 | 70.41 | 67.75 | 44.64 | 68.98 | 86.50 | 61.57 | 65.75 | 2017 | 72.70 | model | shell |
SCNN | ResNet50 | level 0 | 91.38 | 70.60 | 67.62 | 45.02 | 71.24 | 86.90 | 66.03 | 66.17 | 1958 | 73.03 | model | shell |
SCNN | ResNet101 | level 0 | 91.10 | 71.43 | 68.53 | 46.39 | 72.61 | 86.87 | 61.95 | 67.01 | 1720 | 73.58 | model | shell |
SCNN | ERFNet | level 0 | 91.82 | 72.13 | 69.49 | 46.68 | 70.59 | 87.40 | 64.18 | 68.30 | 2236 | 74.03 | model | shell |
SCNN | RepVGG-A0 | level 0 | 91.06 | 71.30 | 67.23 | 44.75 | 70.51 | 87.11 | 61.73 | 66.61 | 1963 | 72.89 | model | shell |
RESA | ResNet18 | level 0 | 91.23 | 70.57 | 67.16 | 45.24 | 68.01 | 86.56 | 64.32 | 66.19 | 1679 | 72.90 | model | shell |
RESA | ResNet34 | level 0 | 91.31 | 71.80 | 67.54 | 46.57 | 72.74 | 86.94 | 64.46 | 67.31 | 1701 | 73.66 | model | shell |
RESA | ResNet50 | level 0 | 91.52 | 72.49 | 68.44 | 47.02 | 72.56 | 87.34 | 63.11 | 68.21 | 1493 | 74.19 | model | shell |
RESA | ResNet101 | level 0 | 91.45 | 71.51 | 69.01 | 46.54 | 75.52 | 87.75 | 63.90 | 68.24 | 1522 | 74.04 | model | shell |
RESA | ERFNet | level 0 | 91.18 | 71.07 | 68.50 | 45.49 | 69.53 | 87.68 | 64.52 | 65.56 | 1777 | 73.32 | model | shell |
RESA | MobileNetV2 | level 0 | 90.58 | 70.42 | 67.19 | 45.29 | 62.80 | 85.52 | 66.00 | 65.19 | 1945 | 72.36 | model | shell |
RESA | MobileNetV3-Large | level 0 | 89.53 | 67.63 | 65.74 | 43.08 | 66.07 | 84.61 | 60.10 | 63.14 | 2218 | 70.61 | model | shell |
LSTR | ResNet18s-2X | level 0 | 56.17 | 39.10 | 22.90 | 25.62 | 25.49 | 52.09 | 40.21 | 30.33 | 1690 | 39.77 | model | shell |
LSTR | ResNet18s-2X | level 1a | 86.78 | 67.34 | 59.92 | 40.10 | 59.82 | 78.66 | 56.63 | 56.64 | 1166 | 68.72 | model | shell |
LSTR | ResNet34 | level 1a | 89.73 | 69.77 | 66.72 | 45.32 | 68.16 | 85.03 | 64.34 | 64.13 | 1247 | 72.48 | model | shell |
LaneATT | ResNet18 | level 1c | 90.74 | 72.63 | 69.53 | 47.71 | 70.38 | 86.55 | 65.02 | 65.73 | 1036 | 74.87 | model | shell |
LaneATT | ResNet34 | level 1c | 91.36 | 73.72 | 70.71 | 48.40 | 73.69 | 86.86 | 68.95 | 66.00 | 965 | 75.82 | model | shell |
BézierLaneNet | ResNet18 | level 1b | 90.22 | 71.55 | 68.70 | 45.30 | 70.91 | 84.09 | 62.49 | 58.98 | 996 | 73.67 | model | shell |
BézierLaneNet | ResNet34 | level 1b | 91.59 | 73.20 | 69.90 | 48.05 | 76.74 | 87.16 | 69.20 | 62.45 | 888 | 75.57 | model | shell |
method | backbone | data augmentation |
F1 | TP | FP | FN | Precision | Recall | val / test | |
---|---|---|---|---|---|---|---|---|---|---|
Baseline | VGG16 | level 0 | 95.11 | 70263 | 3460 | 3772 | 95.31 | 94.91 | val | model | shell |
Baseline | ResNet34 | level 0 | 95.91 | 70841 | 2847 | 3194 | 96.14 | 95.69 | val | model | shell |
Baseline | ERFNet | level 0 | 96.13 | 71136 | 2830 | 2899 | 96.17 | 96.08 | val | model | shell |
SCNN | VGG16 | level 0 | 96.42 | 71274 | 2526 | 2761 | 96.27 | 96.42 | val | model | shell |
SCNN | ERFNet | level 0 | 95.94 | 71036 | 3019 | 2999 | 95.92 | 95.95 | val | model | shell |
SCNN | ResNet34 | level 0 | 96.19 | 71109 | 2705 | 2926 | 96.34 | 96.05 | val | model | shell |
BézierLaneNet | ResNet18 | level 1b | 95.52 | 70515 | 3102 | 3520 | 95.79 | 95.25 | val | model | shell |
BézierLaneNet | ResNet34 | level 1b | 96.11 | 70959 | 2667 | 3076 | 96.38 | 95.85 | val | model | shell |
Their test performance can be found at the LLAMAS leaderboard.
model | resolution | mixed precision? | dataset | average | best | training time (2080 Ti) |
best model link |
---|---|---|---|---|---|---|---|
FCN | 321 x 321 | yes | PASCAL VOC 2012 | 70.72 | 70.83 | 3.3h | model | shell |
FCN | 321 x 321 | no | PASCAL VOC 2012 | 70.91 | 71.55 | 6.3h | model | shell |
DeeplabV2 | 321 x 321 | yes | PASCAL VOC 2012 | 74.59 | 74.74 | 3.3h | model | shell |
DeeplabV3 | 321 x 321 | yes | PASCAL VOC 2012 | 78.11 | 78.17 | 7h | model | shell |
FCN | 256 x 512 | yes | Cityscapes | 68.05 | 68.20 | 2.2h | model | shell |
DeeplabV2 | 256 x 512 | yes | Cityscapes | 68.65 | 68.90 | 2.2h | model | shell |
DeeplabV3 | 256 x 512 | yes | Cityscapes | 69.87 | 70.37 | 4.5h | model | shell |
DeeplabV2 | 256 x 512 | no | Cityscapes | 68.45 | 68.89 | 4h | model | shell |
ERFNet | 512 x 1024 | yes | Cityscapes | 71.99 | 72.47 | 5h | model | shell |
ENet | 512 x 1024 | yes | Cityscapes | 65.54 | 65.74 | 10.6h | model | shell |
DeeplabV2 | 512 x 1024 | yes | Cityscapes | 71.78 | 72.12 | 9h | model | shell |
DeeplabV3 | 512 x 1024 | yes | Cityscapes | 74.64 | 74.67 | 20.1h | model | shell |
DeeplabV2 | 512 x 1024 | yes | GTAV | 32.90 | 33.88 | 13.8h | model | shell |
DeeplabV2 | 512 x 1024 | yes | SYNTHIA* | 33.89 | 34.86 | 10.4h | model | shell |
All performance is measured with ImageNet pre-training and reported as 3 times average/best mIoU (%) on val set.
* mIoU-16.