-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
FP8 MoE implementation, take 2 #3954
base: main
Are you sure you want to change the base?
Conversation
This PR is the first step towards fixing #3208 It implements dynamic per-tensor scaling (see #4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in #3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project#3208 It implements dynamic per-tensor scaling (see vllm-project#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project#3208 It implements dynamic per-tensor scaling (see vllm-project#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project#3208 It implements dynamic per-tensor scaling (see vllm-project#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project/vllm#3208 It implements dynamic per-tensor scaling (see vllm-project/vllm#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project/vllm#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project/vllm#3208 It implements dynamic per-tensor scaling (see vllm-project/vllm#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project/vllm#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This PR is the first step towards fixing vllm-project#3208 It implements dynamic per-tensor scaling (see vllm-project#4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in vllm-project#3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
This pull request has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this pull request should remain open. Thank you! |
This pull request has merge conflicts that must be resolved before it can be |
This is the next step in #3208, improving the performance of the MoE implementation. It turns out using
split k
(see e.g. https://pytorch.org/blog/accelerating-moe-model/#30-work-decomposition---splitk and https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md#parallelized-reductions) helps quite a bit for fp8 for batch sizes up to around 32.The numbers are as follows (this is comparing the https://huggingface.co/pcmoritz/Mixtral-8x7B-Instruct-v0.1-FP8MOE model against just vanilla FP16 https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1). The FP8 results are in bold and the FP16 results are non-bold:
The gain is pretty good in the large qps setting -- for very small qps we will most likely need a separate kernel to get the best performance.
PR Checklist (Click to Expand)
Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.
PR Title and Classification
Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:
[Bugfix]
for bug fixes.[CI/Build]
for build or continuous integration improvements.[Doc]
for documentation fixes and improvements.[Model]
for adding a new model or improving an existing model. Model name should appear in the title.[Frontend]
For changes on the vLLM frontend (e.g., OpenAI API server,LLM
class, etc.)[Kernel]
for changes affecting CUDA kernels or other compute kernels.[Core]
for changes in the core vLLM logic (e.g.,LLMEngine
,AsyncLLMEngine
,Scheduler
, etc.)[Hardware][Vendor]
for hardware-specific changes. Vendor name should appear in the prefix (e.g.,[Hardware][AMD]
).[Misc]
for PRs that do not fit the above categories. Please use this sparingly.Note: If the PR spans more than one category, please include all relevant prefixes.
Code Quality
The PR need to meet the following code quality standards:
format.sh
to format your code.docs/source/
if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.Notes for Large Changes
Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with
rfc-required
and might not go through the PR.What to Expect for the Reviews
The goal of the vLLM team is to be a transparent reviewing machine. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process:
action-required
label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.Thank You
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone!