Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OpenAI Tools / function calling v2 #3237

Closed
wants to merge 11 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
251 changes: 251 additions & 0 deletions examples/openai_tools_calls.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
"""
Inspired by the OpenAI example found here:
https://platform.openai.com/docs/guides/function-calling/parallel-function-calling
"""

from openai import OpenAI
import datetime
import json

client = OpenAI(api_key="EMPTY", base_url="http://localhost:8000/v1")
models = client.models.list()
model = models.data[0].id
temperature = 0.1
stream = True

# Can be used to reset the tokenizer and functions templates. Vllm have to be launch with --privileged argument:
# import httpx
# httpx.get('http://localhost:8000/privileged')

# This template can be set to None, and the server will use a generic template. It is only defined here to be an example.
# The generic template is defined in vllm/entrypoints/openai/protocol.py:VllmToolsTemplate.
# Most values can be empty (except for call_token_start) but cannot be None.
# This template is used internally and will not be returned to the user, but it can influence the quality of the responses provided by the llm.
TOOLS_TEMPLATE = {
# Keywords used by the model to call functions. Must be defined to catch function calls:
"call_token_start":
"<tool_call>",
"call_token_end":
"</tool_call>",

# Keywords used to define functions. Used to present the list of functions to the llm
"tool_token_start":
"<tool>",
"tool_token_end":
"</tool>",

# Response keywords. Used to present the values returned by the functions
"response_token_start":
"<tool_response>",
"response_token_end":
"</tool_response>",

# Call notifications to the model (optional)
"tool_call_notif_noarg_start":
"", #
"tool_call_notif_noarg_end":
"was called with no argument",
"tool_call_notif_args_start":
"",
"tool_call_notif_args_end":
"was called with arguments",

# Instructions (guided generation if tool_choice is defined on a specific function)
"function_guided":
"You must call the following function at least one time to answer the question. You may call it multiple times if needed:",

# Instructions (auto mode, if tool_choice equals "auto" or None)
"function_list_start":
"The following is a list of external functions that may be called to complete certain tasks:",
"function_list_end":
"""End of list

* Whenever the user asks you something, you can either respond directly or invoke a function if it is present in the previous list.
* The decision to invoke a function is yours, only invoke a function if it is necessary to answer the user's question
* If you need to call at least one function, your message should contain only a list of function calls and nothing else; the function calls are the response.""",

# Instructions on how to call functions. Must follow call_token_start and call_token_end to get the parser work
"function_call_instruct":
"""For each function call return a valid json object (using quotes) with function name and arguments within <tool_call>{ }</tool_call> XML tags as follows::
* With arguments:
<tool_call>{ "name": "function_name", "arguments": {"argument_name": "value"} }</tool_call>
* Without arguments:
<tool_call>{ "name": "function_name", "arguments": null }</tool_call>

End of functions instructions"""
}

EXTRA_BODY_OPENAI = {"stop_token_ids": [32000], "tool_params": TOOLS_TEMPLATE}


# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="celsius"):
"""Get the current weather in a given location"""
if unit is None:
unit = "celsius"
print("Calling get_current_weather client side : (\"%s\", %s)" %
(str(location), unit))
if isinstance(location, str):
if "tokyo" in location.lower():
temperature = "50" if unit.lower() == "fahrenheit" else "10"
return json.dumps({
"location": "Tokyo",
"temperature": temperature,
"unit": unit
})
elif "san francisco" in location.lower():
temperature = "75" if unit.lower() == "fahrenheit" else "24"
return json.dumps({
"location": "San Francisco",
"temperature": temperature,
"unit": unit
})
elif "paris" in location.lower():
temperature = "72" if unit.lower() == "fahrenheit" else "22"
return json.dumps({
"location": "Paris",
"temperature": temperature,
"unit": unit
})
return json.dumps({"location": str(location), "temperature": "unknown"})


def get_current_date_utc():
print("Calling get_current_date_utc client side.")
return datetime.datetime.now(datetime.timezone.utc).strftime(
"The current UTC datetime is (day: %A, date (day/month/year): %d/%m/%Y, time: %H:%M)."
)


def run_conversation(question: str, tool_choice_param):
# Step 1: send the conversation and available functions to the model
# messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
messages = [{"role": "user", "content": question}]
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type":
"string",
"description":
"The city and state, e.g. San Francisco, CA as a string",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
},
},
"required": ["location"],
},
},
}, {
"type": "function",
"function": {
"name": "get_current_date_utc",
"description": "Get the current UTC time",
},
}]
response = client.chat.completions.create(model=model,
messages=messages,
tools=tools,
stream=stream,
tool_choice=tool_choice_param,
temperature=temperature,
extra_body=EXTRA_BODY_OPENAI)
response_message = ""
tool_calls = []
if stream:
text_message = ""
for chunk in response:
if chunk.choices[0].finish_reason is not None:
if chunk.choices[0].finish_reason == "tool_calls":
tool_calls += chunk.choices[0].delta.tool_calls
# print("TEST : %s" % chunk.choices[0].delta.tool_calls)
break
if chunk.choices[0].delta.content is not None:
text_message += chunk.choices[0].delta.content
response_message = {
"role": "assistant",
"content": text_message,
"tool_calls": tool_calls
}
# print(str(response_message))
else:
if not len(response.choices):
return None
response_message = response.choices[0].message
if response_message.tool_calls is not None:
tool_calls = response_message.tool_calls
else:
print("The tool_calls response is null ?!")

# Step 2: check if the model wanted to call a function
if len(tool_calls):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
"get_current_date_utc": get_current_date_utc,
}
messages.append(
response_message) # extend conversation with assistant's reply
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
if function_name in available_functions:
function_to_call = available_functions[function_name]
if function_name == "get_current_weather":
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
else:
function_response = function_to_call()
else:
print("The model halucinated a function : %s" % function_name)
continue

messages.append({
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}) # extend conversation with function response
second_response = client.chat.completions.create(
model=model, messages=messages, extra_body=EXTRA_BODY_OPENAI
) # get a new response from the model where it can see the function response

for it_msg, msg in enumerate(messages):
print("Message %i:\n %s\n" % (it_msg, str(msg)))

return second_response


print("#############################################################")
question = "What's the weather like in San Francisco, Tokyo, and Paris ? We also need to know the current date."
# question = "What's the weather like in Paris ? We also need to know the current date."
print("New request using templates: %s" % question)
auto_result = run_conversation(question=question, tool_choice_param="auto")
print("Final response (tool_choice=\"auto\"):\n%s" % auto_result)
print("#############################################################\n")

print("#############################################################")
question = "What's the weather like in Paris ?"
print("New request using guided generation: %s" % question)
guided_result = run_conversation(question=question,
tool_choice_param={
"type": "function",
"function": {
"name": "get_current_weather"
}
})
print("Final response (tool_choice=\"get_current_weather\"):\n%s" %
guided_result)
print("#############################################################\n")
Loading