Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions tests/kernels/test_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,11 @@
import pytest
import torch

from typing import Tuple

from vllm._C import cache_ops

COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [42] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
Expand Down Expand Up @@ -149,3 +152,68 @@ def test_reshape_and_cache(

assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)


@pytest.mark.parametrize("direction", COPYING_DIRECTION)
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_swap_blocks(
kv_cache_factory,
direction: Tuple[str, str],
num_mappings: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
src_device = f"{direction[0]}:{device}" if direction[
0] == "cuda" else direction[0]
dst_device = f"{direction[1]}:{device}" if direction[
1] == "cuda" else direction[1]

src_blocks = random.sample(range(num_blocks), num_mappings)
# For the same device, mapping must not overlap
if src_device == dst_device:
remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remaining_blocks, num_mappings)
else:
dst_blocks = random.sample(range(num_blocks), num_mappings)

block_mapping = dict(zip(src_blocks, dst_blocks))

# Create the KV caches on the first device.
src_key_caches, src_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, dtype, seed,
src_device)

# Create the KV caches on the second device.
dist_key_caches, dist_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, dtype, seed,
dst_device)

src_key_caches_clone = src_key_caches[0].clone()
src_value_caches_clone = src_value_caches[0].clone()

# Call the swap_blocks kernel.
cache_ops.swap_blocks(src_key_caches[0], dist_key_caches[0], block_mapping)
cache_ops.swap_blocks(src_value_caches[0], dist_value_caches[0],
block_mapping)

for src, dst in block_mapping.items():
assert torch.allclose(src_key_caches_clone[src].cpu(),
dist_key_caches[0][dst].cpu())
assert torch.allclose(src_value_caches_clone[src].cpu(),
dist_value_caches[0][dst].cpu())