Skip to content

[Bugfix][CI] ALiBi test case in xformers multi_query_kv_attention #11301

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 78 additions & 17 deletions tests/kernels/test_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask

from vllm.attention.backends.xformers import _make_alibi_bias

FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
Expand Down Expand Up @@ -345,20 +347,26 @@ def ref_multi_query_kv_attention(
key: torch.Tensor,
value: torch.Tensor,
scale: float,
alibi_bias: Optional[list[torch.Tensor]],
dtype: torch.dtype,
) -> torch.Tensor:
num_seqs = len(cu_seq_lens) - 1
ref_outputs: list[torch.Tensor] = []
if alibi_bias:
assert len(alibi_bias) == num_seqs
for i in range(num_seqs):
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
seq_len = end_idx - start_idx

# Create attention mask.
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype)
# Create attention mask. ALiBi already includes a tril causal mask.
if alibi_bias:
attn_mask = alibi_bias[i]
else:
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype)

ref_output = ref_masked_attention(
query[start_idx:end_idx],
Expand All @@ -372,7 +380,6 @@ def ref_multi_query_kv_attention(
return torch.cat(ref_outputs, dim=0)


# TODO(woosuk): Add tests for USE_ALIBI=True.
@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
Expand All @@ -389,6 +396,7 @@ def test_multi_query_kv_attention(
dtype: torch.dtype,
seed: int,
device: str,
use_alibi: bool = False,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
Expand All @@ -414,16 +422,40 @@ def test_multi_query_kv_attention(
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
output = xops.memory_efficient_attention_forward(
query.unsqueeze(0),
key.unsqueeze(0),
value.unsqueeze(0),
attn_bias=attn_bias,
p=0.0,
scale=scale,
)
output = output.squeeze(0)
alibi_bias = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float)
attn_bias = _make_alibi_bias(alibi_slopes, num_kv_heads, dtype,
seq_lens)
output = torch.empty_like(query)
start = 0
# Dynamic sequence length not supported with custom attn_bias.
for i, seq_len in enumerate(seq_lens):
end = start + seq_len
out = xops.memory_efficient_attention_forward(
query[None, start:end],
key[None, start:end],
value[None, start:end],
attn_bias=attn_bias[i],
p=0.0,
scale=scale)
output[start:end].copy_(out.view_as(query[start:end]))
start += seq_len
# xformers.AttentionBias to Tensor for use in reference impl.
alibi_bias = [
b.materialize(b.shape, device=device).squeeze() for b in attn_bias
]
else:
attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
output = xops.memory_efficient_attention_forward(
query.unsqueeze(0),
key.unsqueeze(0),
value.unsqueeze(0),
attn_bias=attn_bias,
p=0.0,
scale=scale,
)
output = output.squeeze(0)

cu_seq_lens = [0]
for seq_len in seq_lens:
Expand All @@ -434,8 +466,37 @@ def test_multi_query_kv_attention(
key,
value,
scale,
alibi_bias,
dtype,
)
atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)


@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", [64])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
@torch.inference_mode()
def test_multi_query_kv_attention_with_alibi(
num_seqs: int,
num_heads: tuple[int, int],
head_size: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
return test_multi_query_kv_attention(
num_seqs,
num_heads,
head_size,
dtype,
seed,
device,
use_alibi=True,
)
8 changes: 5 additions & 3 deletions tests/kernels/test_prefix_prefill.py
Original file line number Diff line number Diff line change
Expand Up @@ -439,14 +439,16 @@ def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
# heads.
#
# see also: vllm/model_executor/layers/attention.py
query = query.view(query.shape[0], num_kv_heads, num_queries_per_kv,
query.shape[-1])
key = key[:, :, None, :].expand(key.shape[0], num_kv_heads,
num_queries_per_kv, key.shape[-1])
value = value[:, :,
None, :].expand(value.shape[0], num_kv_heads,
num_queries_per_kv, value.shape[-1])

# [seq, num_kv_heads, num_queries_per_kv, dk]=>
# [seq, num_kv_heads*num_queries_per_kv, dk] to comply with rest of the
# codebase. We save some time reshaping alibi matrix at runtime.
key = key.reshape(key.shape[0], -1, key.shape[-1])
value = value.reshape(value.shape[0], -1, value.shape[-1])
query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)
Expand Down
2 changes: 0 additions & 2 deletions vllm/attention/backends/xformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -788,8 +788,6 @@ def _make_alibi_bias(
dtype=dtype,
)[:, :, :, :seq_len].copy_(bias)
bias.mul_(alibi_slopes[:, None, None])
if num_heads != num_kv_heads:
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
attn_biases.append(LowerTriangularMaskWithTensorBias(bias))

return attn_biases