Skip to content

[Bug]: TimeoutError During Benchmark Profiling with Torch Profiler on vLLM v0.6.0 #8326

Closed
@hxer7963

Description

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.27.7
Libc version: glibc-2.35

Python version: 3.8.18 (default, Sep 11 2023, 13:40:15)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.119-19-0009.11-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A800-SXM4-80GB
Nvidia driver version: 470.182.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   48 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          232
On-line CPU(s) list:             0-231
Vendor ID:                       AuthenticAMD
Model name:                      AMD EPYC 7K83 64-Core Processor
CPU family:                      25
Model:                           1
Thread(s) per core:              2
Core(s) per socket:              58
Socket(s):                       2
Stepping:                        1
BogoMIPS:                        4890.80
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat umip pku ospke vaes vpclmulqdq rdpid fsrm
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       3.6 MiB (116 instances)
L1i cache:                       3.6 MiB (116 instances)
L2 cache:                        58 MiB (116 instances)
L3 cache:                        512 MiB (16 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-115
NUMA node1 CPU(s):               116-231
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Full AMD retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] nvidia-cublas-cu11==11.10.3.66
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu11==11.7.101
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu11==11.7.99
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu11==11.7.99
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu11==8.5.0.96
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu11==10.2.10.91
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu11==11.4.0.1
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu11==11.7.4.91
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-dali-cuda120==1.36.0
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu11==2.14.3
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvimgcodec-cu12==0.2.0.7
[pip3] nvidia-nvjitlink-cu12==12.4.99
[pip3] nvidia-nvtx-cu11==11.7.91
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pynvml==11.5.0
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.2
[pip3] transformers-stream-generator==0.0.4
[pip3] triton==3.0.0
[pip3] tritonclient==2.43.0
[conda] numpy                     1.24.4                   pypi_0    pypi
[conda] nvidia-cublas-cu11        11.10.3.66               pypi_0    pypi
[conda] nvidia-cublas-cu12        12.1.3.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu11    11.7.101                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu11    11.7.99                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu11  11.7.99                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.1.105                 pypi_0    pypi
[conda] nvidia-cudnn-cu11         8.5.0.96                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu11         10.9.0.58                pypi_0    pypi
[conda] nvidia-cufft-cu12         11.0.2.54                pypi_0    pypi
[conda] nvidia-curand-cu11        10.2.10.91               pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.2.106               pypi_0    pypi
[conda] nvidia-cusolver-cu11      11.4.0.1                 pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.4.5.107               pypi_0    pypi
[conda] nvidia-cusparse-cu11      11.7.4.91                pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.1.0.106               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu11          2.14.3                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.99                  pypi_0    pypi
[conda] nvidia-nvtx-cu11          11.7.91                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.1.105                 pypi_0    pypi
[conda] pynvml                    11.5.0                   pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.4.0                    pypi_0    pypi
[conda] torchvision               0.19.0                   pypi_0    pypi
[conda] transformers              4.44.2                   pypi_0    pypi
[conda] transformers-stream-generator 0.0.4                    pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi
[conda] tritonclient              2.43.0                   pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.0@32e7db25365415841ebc7c4215851743fbb1bad1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity
GPU0     X      116-231 1

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

I am attempting to profile the performance of vLLM v0.6.0 by following the vLLM profiling documentation.

Here’s the process I followed:

  1. Set up the profiler environment:
export VLLM_TORCH_PROFILER_DIR=/app/vllm_profile
  1. Launched the OpenAI server:
python -m vllm.entrypoints.openai.api_server --tensor-parallel-size 1 \
--model /mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 \
--trust-remote-code --max-model-len 8192
  1. Launched the benchmark process:
python benchmark_serving.py --backend vllm --model /mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 \
--dataset-name sharegpt --dataset-path sharegpt.json --num-prompts 2 --profile
  1. Error Encountered:
    While running the benchmark, I encountered a TimeoutError: Server didn't reply within 5000 ms in the vLLM OpenAI server log. The relevant section of the log is as follows:
WARNING 09-10 16:07:55 api_server.py:327] Torch Profiler is enabled in the API server. This should ONLY be used for local development!
INFO 09-10 16:07:55 api_server.py:459] vLLM API server version 0.6.0
INFO 09-10 16:07:55 api_server.py:460] args: Namespace(allow_credentials=False, allowed_headers=['*'], allowed_methods=['*'], allowed_origins=['*'], api_key=None, block_size=16, chat_template=None, code_revision=None, collect_detailed_traces=None, cpu_offload_gb=0, device='auto', disable_async_output_proc=False, disable_custom_all_reduce=False, disable_frontend_multiprocessing=False, disable_log_requests=False, disable_log_stats=False, disable_logprobs_during_spec_decoding=None, disable_sliding_window=False, distributed_executor_backend=None, download_dir=None, dtype='auto', enable_auto_tool_choice=False, enable_chunked_prefill=None, enable_lora=False, enable_prefix_caching=False, enable_prompt_adapter=False, enforce_eager=False, engine_use_ray=False, fully_sharded_loras=False, gpu_memory_utilization=0.9, guided_decoding_backend='outlines', host=None, ignore_patterns=[], kv_cache_dtype='auto', limit_mm_per_prompt=None, load_format='auto', long_lora_scaling_factors=None, lora_dtype='auto', lora_extra_vocab_size=256, lora_modules=None, max_context_len_to_capture=None, max_cpu_loras=None, max_log_len=None, max_logprobs=20, max_lora_rank=16, max_loras=1, max_model_len=8192, max_num_batched_tokens=None, max_num_seqs=256, max_parallel_loading_workers=None, max_prompt_adapter_token=0, max_prompt_adapters=1, max_seq_len_to_capture=8192, middleware=[], model='/mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8', model_loader_extra_config=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, num_gpu_blocks_override=None, num_lookahead_slots=0, num_scheduler_steps=1, num_speculative_tokens=None, otlp_traces_endpoint=None, override_neuron_config=None, pipeline_parallel_size=1, port=8000, preemption_mode=None, prompt_adapters=None, qlora_adapter_name_or_path=None, quantization=None, quantization_param_path=None, ray_workers_use_nsight=False, response_role='assistant', return_tokens_as_token_ids=False, revision=None, root_path=None, rope_scaling=None, rope_theta=None, scheduler_delay_factor=0.0, seed=0, served_model_name=None, skip_tokenizer_init=False, spec_decoding_acceptance_method='rejection_sampler', speculative_disable_by_batch_size=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_model=None, speculative_model_quantization=None, ssl_ca_certs=None, ssl_cert_reqs=0, ssl_certfile=None, ssl_keyfile=None, swap_space=4, tensor_parallel_size=1, tokenizer=None, tokenizer_mode='auto', tokenizer_pool_extra_config=None, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_revision=None, tool_call_parser=None, trust_remote_code=True, typical_acceptance_sampler_posterior_alpha=None, typical_acceptance_sampler_posterior_threshold=None, use_v2_block_manager=False, uvicorn_log_level='info', worker_use_ray=False)
INFO 09-10 16:07:55 api_server.py:160] Multiprocessing frontend to use ipc:///tmp/961fbd3d-8728-4690-b8fe-0026ccbf61dd for RPC Path.
INFO 09-10 16:07:55 api_server.py:176] Started engine process with PID 12240
WARNING 09-10 16:07:58 cuda.py:22] You are using a deprecated `pynvml` package. Please install `nvidia-ml-py` instead, and make sure to uninstall `pynvml`. When both of them are installed, `pynvml` will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
WARNING 09-10 16:08:01 api_server.py:327] Torch Profiler is enabled in the API server. This should ONLY be used for local development!
INFO 09-10 16:08:01 llm_engine.py:213] Initializing an LLM engine (v0.6.0) with config: model='/mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8', speculative_config=None, tokenizer='/mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=compressed-tensors, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=/mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=True)
INFO 09-10 16:08:02 worker.py:124] Profiling enabled. Traces will be saved to: /app/vllm_profiler
INFO 09-10 16:08:02 model_runner.py:915] Starting to load model /mnt/llm_dataset/willhe/ckpt/Meta-Llama-3.1-8B-Instruct-quantized.w8a8...
Loading safetensors checkpoint shards:   0% Completed | 0/2 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  50% Completed | 1/2 [00:01<00:01,  1.43s/it]
Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:03<00:00,  1.66s/it]
Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:03<00:00,  1.62s/it]

INFO 09-10 16:08:06 model_runner.py:926] Loading model weights took 8.4939 GB
INFO 09-10 16:08:07 gpu_executor.py:122] # GPU blocks: 31260, # CPU blocks: 2048
INFO 09-10 16:08:09 model_runner.py:1217] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 09-10 16:08:09 model_runner.py:1221] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
INFO 09-10 16:08:21 model_runner.py:1335] Graph capturing finished in 12 secs.
INFO 09-10 16:08:22 api_server.py:224] vLLM to use /tmp/tmp_i4t0w55 as PROMETHEUS_MULTIPROC_DIR
WARNING 09-10 16:08:22 serving_embedding.py:190] embedding_mode is False. Embedding API will not work.
INFO 09-10 16:08:22 launcher.py:20] Available routes are:
INFO 09-10 16:08:22 launcher.py:28] Route: /openapi.json, Methods: GET, HEAD
INFO 09-10 16:08:22 launcher.py:28] Route: /docs, Methods: GET, HEAD
INFO 09-10 16:08:22 launcher.py:28] Route: /docs/oauth2-redirect, Methods: GET, HEAD
INFO 09-10 16:08:22 launcher.py:28] Route: /redoc, Methods: GET, HEAD
INFO 09-10 16:08:22 launcher.py:28] Route: /health, Methods: GET
INFO 09-10 16:08:22 launcher.py:28] Route: /tokenize, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /detokenize, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /v1/models, Methods: GET
INFO 09-10 16:08:22 launcher.py:28] Route: /version, Methods: GET
INFO 09-10 16:08:22 launcher.py:28] Route: /v1/chat/completions, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /v1/completions, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /v1/embeddings, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /start_profile, Methods: POST
INFO 09-10 16:08:22 launcher.py:28] Route: /stop_profile, Methods: POST
INFO 09-10 16:08:22 launcher.py:33] Launching Uvicorn with --limit_concurrency 32765. To avoid this limit at the expense of performance run with --disable-frontend-multiprocessing
INFO:     Started server process [12171]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
INFO 09-10 16:08:32 metrics.py:351] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 09-10 16:10:21 logger.py:36] Received request cmpl-11174501eb824056b9a481a9ca45afad-0: prompt: 'Do you know the book Traction by Gino Wickman', params: SamplingParams(n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.0, top_p=1.0, top_k=-1, min_p=0.0, seed=None, use_beam_search=False, length_penalty=1.0, early_stopping=False, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=119, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None), prompt_token_ids: [5519, 499, 1440, 279, 2363, 350, 16597, 555, 480, 3394, 75206, 1543], lora_request: None, prompt_adapter_request: None.
INFO:     127.0.0.1:45336 - "POST /v1/completions HTTP/1.1" 200 OK
INFO 09-10 16:10:21 async_llm_engine.py:206] Added request cmpl-11174501eb824056b9a481a9ca45afad-0.
INFO 09-10 16:10:21 metrics.py:351] Avg prompt throughput: 1.3 tokens/s, Avg generation throughput: 0.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 09-10 16:10:22 async_llm_engine.py:174] Finished request cmpl-11174501eb824056b9a481a9ca45afad-0.
INFO 09-10 16:10:22 async_llm_engine.py:174] Finished request cmpl-11174501eb824056b9a481a9ca45afad-0.
INFO 09-10 16:10:22 api_server.py:333] Starting profiler...
INFO 09-10 16:10:22 server.py:134] Starting profiler...
INFO:     127.0.0.1:45346 - "POST /start_profile HTTP/1.1" 500 Internal Server Error
ERROR:    Exception in ASGI application
Traceback (most recent call last):
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/uvicorn/protocols/http/httptools_impl.py", line 419, in run_asgi
    result = await app(  # type: ignore[func-returns-value]
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/uvicorn/middleware/proxy_headers.py", line 84, in __call__
    return await self.app(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/fastapi/applications.py", line 1054, in __call__
    await super().__call__(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/applications.py", line 123, in __call__
    await self.middleware_stack(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/middleware/errors.py", line 186, in __call__
    raise exc
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/middleware/errors.py", line 164, in __call__
    await self.app(scope, receive, _send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/middleware/cors.py", line 83, in __call__
    await self.app(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/middleware/exceptions.py", line 62, in __call__
    await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/_exception_handler.py", line 64, in wrapped_app
    raise exc
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/_exception_handler.py", line 53, in wrapped_app
    await app(scope, receive, sender)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/routing.py", line 758, in __call__
    await self.middleware_stack(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/routing.py", line 778, in app
    await route.handle(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/routing.py", line 299, in handle
    await self.app(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/routing.py", line 79, in app
    await wrap_app_handling_exceptions(app, request)(scope, receive, send)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/_exception_handler.py", line 64, in wrapped_app
    raise exc
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/_exception_handler.py", line 53, in wrapped_app
    await app(scope, receive, sender)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/starlette/routing.py", line 74, in app
    response = await func(request)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/fastapi/routing.py", line 278, in app
    raw_response = await run_endpoint_function(
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/fastapi/routing.py", line 191, in run_endpoint_function
    return await dependant.call(**values)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/vllm/entrypoints/openai/api_server.py", line 334, in start_profile
    await async_engine_client.start_profile()
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/vllm/entrypoints/openai/rpc/client.py", line 442, in start_profile
    await self._send_one_way_rpc_request(
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/vllm/entrypoints/openai/rpc/client.py", line 258, in _send_one_way_rpc_request
    response = await do_rpc_call(socket, request)
  File "/mnt/llm_dataset/willhe/miniconda3/envs/vllm/lib/python3.8/site-packages/vllm/entrypoints/openai/rpc/client.py", line 248, in do_rpc_call
    raise TimeoutError("Server didn't reply within "
TimeoutError: Server didn't reply within 5000 ms

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions