Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Shutdown error when using multiproc_gpu_executor #5521

Open
wooyeonlee0 opened this issue Jun 14, 2024 · 5 comments
Open

[Bug]: Shutdown error when using multiproc_gpu_executor #5521

wooyeonlee0 opened this issue Jun 14, 2024 · 5 comments
Assignees
Labels
bug Something isn't working stale

Comments

@wooyeonlee0
Copy link
Contributor

Your current environment

Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.3.52
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB

Nvidia driver version: 510.73.08
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   48 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          256
On-line CPU(s) list:             0-254
Off-line CPU(s) list:            255
Vendor ID:                       AuthenticAMD
Model name:                      AMD EPYC 7742 64-Core Processor
CPU family:                      23
Model:                           49
Thread(s) per core:              2
Core(s) per socket:              64
Socket(s):                       2
Stepping:                        0
BogoMIPS:                        4491.93
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca
Virtualization:                  AMD-V
L1d cache:                       4 MiB (128 instances)
L1i cache:                       4 MiB (128 instances)
L2 cache:                        64 MiB (128 instances)
L3 cache:                        512 MiB (32 instances)
NUMA node(s):                    8
NUMA node0 CPU(s):               0-15,128-143
NUMA node1 CPU(s):               16-31,144-159
NUMA node2 CPU(s):               32-47,160-175
NUMA node3 CPU(s):               48-63,176-191
NUMA node4 CPU(s):               64-79,192-207
NUMA node5 CPU(s):               80-95,208-223
NUMA node6 CPU(s):               96-111,224-239
NUMA node7 CPU(s):               112-127,240-254
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] transformers==4.41.2
[pip3] triton==2.3.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:

🐛 Describe the bug

It's stuck in the process of shutting down multiproc workers.
And after a while, it shuts down automatically.

python3 benchmark_latency.py --max-model-len 2048 --use-v2-block-manager --model facebook/opt-30b --batch-size 8 -tp 2

90% percentile latency: 3.543615456408588 seconds
INFO 06-14 01:49:05 multiproc_worker_utils.py:123] Killing local vLLM worker processes
Fatal Python error: _enter_buffered_busy: could not acquire lock for <_io.BufferedWriter name='<stdout>'> at interpreter shutdown, possibly due to daemon threads
Python runtime state: finalizing (tstate=0x0000562fb90d8e40)

Current thread 0x00007f459cbdc000 (most recent call first):
  <no Python frame>

Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, charset_normalizer.md, requests.packages.charset_normalizer.md, requests.packages.chardet.md, yaml._yaml, psutil._psutil_linux, psutil._psutil_posix, msgpack._cmsgpack, google._upb._message, setproctitle, uvloop.loop, ray._raylet, sentencepiece._sentencepiece, regex._regex, PIL._imaging (total: 34)
/usr/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
  warnings.warn('resource_tracker: There appear to be %d '

python3 benchmark_latency.py --max-model-len 2048 --use-v2-block-manager --model facebook/opt-30b --batch-size 8 -tp 4

90% percentile latency: 2.3295952163927724 seconds
INFO 06-14 01:56:05 multiproc_worker_utils.py:123] Killing local vLLM worker processes
[rank0]:[W CudaIPCTypes.cpp:16] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
/usr/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 3 leaked semaphore objects to clean up at shutdown
  warnings.warn('resource_tracker: There appear to be %d '
@wooyeonlee0 wooyeonlee0 added the bug Something isn't working label Jun 14, 2024
@simon-mo
Copy link
Collaborator

cc @njhill

@njhill njhill self-assigned this Jun 17, 2024
@njhill
Copy link
Member

njhill commented Jun 17, 2024

Thanks for reporting @wooyeonlee0, I'll look into this.

@njhill
Copy link
Member

njhill commented Jun 29, 2024

#5987 fixes part of this (worker proc remained in broadcast loop), still need to get to the bottom of the resource leak messages though.

@njhill
Copy link
Member

njhill commented Aug 1, 2024

#7041 should fix the main error. The other warnings are benign but we'll also continue to look into how to avoid them.

Copy link

github-actions bot commented Nov 1, 2024

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

@github-actions github-actions bot added the stale label Nov 1, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working stale
Projects
None yet
Development

No branches or pull requests

3 participants