Skip to content

Commit 734275f

Browse files
committed
[compile] Fix de-functionalization pass for rotary_embedding
Signed-off-by: angelayi <yiangela7@gmail.com>
1 parent 392edee commit 734275f

File tree

3 files changed

+276
-69
lines changed

3 files changed

+276
-69
lines changed

.buildkite/test-pipeline.yaml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -381,6 +381,7 @@ steps:
381381
- pytest -v -s compile/test_pass_manager.py
382382
- pytest -v -s compile/test_fusion.py
383383
- pytest -v -s compile/test_fusion_attn.py
384+
- pytest -v -s compile/test_functionalization.py
384385
- pytest -v -s compile/test_silu_mul_quant_fusion.py
385386
- pytest -v -s compile/test_sequence_parallelism.py
386387
- pytest -v -s compile/test_async_tp.py

tests/compile/test_functionalization.py

Lines changed: 238 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -5,19 +5,25 @@
55
import torch
66

77
import vllm.envs as envs
8-
from vllm import LLM, SamplingParams
98
from vllm.compilation.activation_quant_fusion import ActivationQuantFusionPass
109
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
11-
from vllm.compilation.fusion import FUSED_OPS, RMSNormQuantFusionPass
10+
from vllm.compilation.fusion import RMSNormQuantFusionPass
1211
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func
1312
from vllm.compilation.noop_elimination import NoOpEliminationPass
1413
from vllm.compilation.post_cleanup import PostCleanupPass
1514
from vllm.config import CompilationConfig, PassConfig, VllmConfig
15+
from vllm.model_executor.layers.activation import SiluAndMul
16+
from vllm.model_executor.layers.layernorm import RMSNorm
1617
from vllm.model_executor.layers.quantization.utils.quant_utils import (
17-
QuantKey, kFp8DynamicTokenSym, kFp8StaticTensorSym)
18+
GroupShape)
19+
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
20+
Fp8LinearOp)
21+
from vllm.model_executor.layers.rotary_embedding import get_rope
22+
from vllm.platforms import current_platform
1823

1924
from .backend import TestBackend
2025

26+
FP8_DTYPE = current_platform.fp8_dtype()
2127
OPS_IN_MODEL = [
2228
torch.ops._C.rotary_embedding.default,
2329
torch.ops._C.fused_add_rms_norm.default,
@@ -28,7 +34,7 @@
2834
RMS_QUANT_OPS = {
2935
"static_fp8": [
3036
torch.ops._C.rms_norm_static_fp8_quant.default,
31-
torch.ops._C.fused_add_rms_norm_static_fp8_quant.default
37+
torch.ops._C.fused_add_rms_norm_static_fp8_quant.default,
3238
],
3339
}
3440

@@ -43,17 +49,222 @@
4349
]
4450

4551

46-
@pytest.mark.parametrize(
47-
"model, quant_key",
48-
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e", kFp8StaticTensorSym),
49-
("nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8_DYNAMIC-e2e",
50-
kFp8DynamicTokenSym)])
52+
class TestSiluMul(torch.nn.Module):
53+
54+
def __init__(self, quant=True, hidden_size: int = 128):
55+
super().__init__()
56+
self.quant = quant
57+
self.silu_and_mul = SiluAndMul()
58+
self.wscale = torch.rand(1, dtype=torch.float32)
59+
self.scale = torch.rand(1, dtype=torch.float32)
60+
61+
if self.quant:
62+
self.w = torch.rand(hidden_size,
63+
hidden_size).to(dtype=FP8_DTYPE).t()
64+
self.fp8_linear = Fp8LinearOp(
65+
act_quant_static=True,
66+
act_quant_group_shape=GroupShape.PER_TENSOR,
67+
)
68+
69+
def forward(self, x):
70+
y = self.silu_and_mul(x)
71+
if self.quant:
72+
x2 = self.fp8_linear.apply(y,
73+
self.w,
74+
self.wscale,
75+
input_scale=self.wscale)
76+
return x2
77+
else:
78+
return y
79+
80+
def example_inputs(self, num_tokens=32, hidden_size=128):
81+
dtype = torch.float16 if self.quant else torch.float32
82+
return (torch.rand(num_tokens, hidden_size * 2, dtype=dtype), )
83+
84+
def ops_in_model(self):
85+
return ([torch.ops._C.silu_and_mul_quant.default]
86+
if self.quant else [torch.ops._C.silu_and_mul.default])
87+
88+
def ops_not_in_model(self):
89+
return []
90+
91+
92+
class TestFusedAddRMSNorm(torch.nn.Module):
93+
94+
def __init__(self, quant=True, hidden_size=16, intermediate_size=32):
95+
super().__init__()
96+
self.quant = quant
97+
self.hidden_size = hidden_size
98+
self.intermediate_size = intermediate_size
99+
100+
dtype = torch.float16 if self.quant else torch.float32
101+
102+
self.gate_proj = torch.nn.Parameter(
103+
torch.empty((intermediate_size, hidden_size), dtype=dtype))
104+
self.norm = RMSNorm(intermediate_size, 1e-05)
105+
self.norm.weight = torch.nn.Parameter(
106+
torch.ones(intermediate_size, dtype=dtype))
107+
108+
torch.nn.init.normal_(self.gate_proj, std=0.02)
109+
110+
if self.quant:
111+
self.fp8_linear = Fp8LinearOp(act_quant_static=True)
112+
113+
self.scale = torch.rand(1, dtype=torch.float32)
114+
self.w = torch.rand(hidden_size,
115+
intermediate_size).to(dtype=FP8_DTYPE).t()
116+
self.wscale = torch.rand(1, dtype=torch.float32)
117+
118+
def forward(self, hidden_states, residual):
119+
# Reshape input
120+
view = hidden_states.reshape(-1, self.hidden_size)
121+
122+
# matrix multiplication
123+
permute = self.gate_proj.permute(1, 0)
124+
mm = torch.mm(view, permute)
125+
126+
# layer normalization
127+
norm_output, residual_output = self.norm(mm, residual)
128+
129+
if self.quant:
130+
# scaled_mm with static input quantization
131+
fp8_linear_result = self.fp8_linear.apply(
132+
norm_output,
133+
self.w,
134+
self.wscale,
135+
input_scale=self.scale.to(norm_output.device),
136+
)
137+
138+
return fp8_linear_result, residual_output
139+
140+
else:
141+
return norm_output, residual_output
142+
143+
def example_inputs(self, batch_size=8, hidden_size=16, seq_len=16):
144+
dtype = torch.float16 if self.quant else torch.float32
145+
hidden_states = torch.randn((batch_size * seq_len, hidden_size),
146+
dtype=dtype)
147+
residual = torch.randn((batch_size * seq_len, hidden_size),
148+
dtype=dtype)
149+
return (hidden_states, residual)
150+
151+
def ops_in_model(self):
152+
return ([torch.ops._C.fused_add_rms_norm_static_fp8_quant.default]
153+
if self.quant else [torch.ops._C.fused_add_rms_norm.default])
154+
155+
def ops_not_in_model(self):
156+
return []
157+
158+
159+
class TestRotaryEmbedding(torch.nn.Module):
160+
161+
def __init__(
162+
self,
163+
quant=False, # not used
164+
head_dim=64,
165+
rotary_dim=None,
166+
max_position=2048,
167+
base=10000):
168+
super().__init__()
169+
self.head_dim = head_dim
170+
self.rotary_dim = rotary_dim or head_dim
171+
172+
self.rotary_emb = get_rope(
173+
self.head_dim,
174+
rotary_dim=self.rotary_dim,
175+
max_position=max_position,
176+
base=base,
177+
)
178+
179+
def forward(self, positions, q, k):
180+
q_rotated, k_rotated = self.rotary_emb(positions, q, k)
181+
return q_rotated, k_rotated
182+
183+
def example_inputs(self, num_tokens=32, head_dim=64):
184+
dtype = torch.float16
185+
positions = torch.arange(num_tokens, dtype=torch.long)
186+
q = torch.randn(num_tokens, head_dim, dtype=dtype)
187+
k = torch.randn(num_tokens, head_dim, dtype=dtype)
188+
return (positions, q, k)
189+
190+
def ops_in_model(self):
191+
return [torch.ops._C.rotary_embedding.default]
192+
193+
def ops_not_in_model(self):
194+
return []
195+
196+
197+
class TestRotaryEmbeddingSliceScatter(torch.nn.Module):
198+
199+
def __init__(
200+
self,
201+
quant=False, # not used
202+
head_dim=64,
203+
num_heads=4,
204+
max_position=2048,
205+
base=10000):
206+
super().__init__()
207+
self.head_dim = head_dim
208+
self.num_heads = num_heads
209+
self.hidden_size = head_dim * num_heads
210+
211+
self.qkv_proj = torch.nn.Linear(self.hidden_size,
212+
self.hidden_size * 3,
213+
bias=False,
214+
dtype=torch.float16)
215+
216+
self.rotary_emb = get_rope(
217+
self.head_dim,
218+
rotary_dim=self.head_dim,
219+
max_position=max_position,
220+
base=base,
221+
)
222+
223+
def forward(self, positions, hidden_states):
224+
# Simulate the pattern: mm -> split_with_sizes -> rotary_embedding
225+
# -> slice_scatter -> split_with_sizes
226+
227+
qkv = self.qkv_proj(hidden_states)
228+
split_sizes = [self.hidden_size, self.hidden_size, self.hidden_size]
229+
q, k, v = torch.split(qkv, split_sizes, dim=-1)
230+
231+
q_rotated, k_rotated = self.rotary_emb(positions, q, k)
232+
233+
qkv_updated = torch.cat([q_rotated, k_rotated, v], dim=-1)
234+
return qkv_updated
235+
236+
def example_inputs(self, num_tokens=32, head_dim=64, num_heads=4):
237+
dtype = torch.float16
238+
hidden_size = head_dim * num_heads
239+
positions = torch.arange(num_tokens, dtype=torch.long)
240+
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
241+
return (positions, hidden_states)
242+
243+
def ops_in_model(self):
244+
return [torch.ops._C.rotary_embedding.default]
245+
246+
def ops_not_in_model(self):
247+
return [torch.ops.aten.slice_scatter.default]
248+
249+
250+
MODELS = [
251+
TestSiluMul,
252+
TestFusedAddRMSNorm,
253+
TestRotaryEmbedding,
254+
TestRotaryEmbeddingSliceScatter,
255+
]
256+
257+
258+
@pytest.mark.parametrize("model_class", MODELS)
259+
@pytest.mark.parametrize("quant", [True, False])
51260
@pytest.mark.parametrize("do_fusion", [True, False])
52261
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda",
53262
reason="Only test on CUDA")
54-
def test_fix_functionalization(model: str, quant_key: QuantKey,
263+
def test_fix_functionalization(model_class: torch.nn.Module, quant: bool,
55264
do_fusion: bool):
56265
torch.set_default_device("cuda")
266+
if quant and not current_platform.supports_fp8():
267+
pytest.skip("FP8 is not supported on this platform")
57268

58269
vllm_config = VllmConfig()
59270
vllm_config.compilation_config = CompilationConfig(
@@ -63,56 +274,31 @@ def test_fix_functionalization(model: str, quant_key: QuantKey,
63274
cleanup_pass = PostCleanupPass(vllm_config)
64275
act_quant_fusion_pass = ActivationQuantFusionPass(vllm_config)
65276

66-
passes = [noop_pass, fusion_pass, act_quant_fusion_pass, cleanup_pass
67-
] if do_fusion else [noop_pass, cleanup_pass]
277+
passes = ([noop_pass, fusion_pass, act_quant_fusion_pass, cleanup_pass]
278+
if do_fusion else [noop_pass, cleanup_pass])
68279
func_pass = FixFunctionalizationPass(vllm_config)
280+
69281
backend_func = TestBackend(*passes, func_pass)
70282
backend_no_func = TestBackend(*passes)
71283

72-
# instantiate a full engine and manually compile the model 2x
73-
# (with and without FixFunctionalizationPass)
74-
llm = LLM(model=model, enforce_eager=True)
75-
model_runner = llm.llm_engine.model_executor.driver_worker.model_runner
76-
orig_model = model_runner.model
77-
# TODO mark inputs dynamic? (currently torch.compile is triggered 4x)
78-
# Can only do that by using the decorator but then we'd have to instantiate
79-
# 2 LLM instances.
80-
81-
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
82-
model_runner.model = torch.compile(orig_model,
83-
fullgraph=True,
84-
backend=backend_func)
85-
gen_func = llm.generate(prompts, sampling_params)
86-
87-
model_runner.model = torch.compile(orig_model,
88-
fullgraph=True,
89-
backend=backend_no_func)
90-
91-
gen_no_func = llm.generate(prompts, sampling_params)
92-
93-
for output_func, output_no_func in zip(gen_func, gen_no_func):
94-
assert output_func.outputs[0].text == output_no_func.outputs[0].text
95-
96-
# OPS_IN_MODEL always appear. RMS_OP is fused away if we run fusion,
97-
# and replaced by fused quantized ops in RMS_QUANT_OPS.
98-
rms_ops = [FUSED_OPS[(quant_key, True)], FUSED_OPS[(quant_key, False)]
99-
] if do_fusion else [RMS_OP]
100-
silu_mul_ops = [SILU_MUL_QUANT_OP] if do_fusion and \
101-
quant_key == kFp8StaticTensorSym else [
102-
SILU_MUL_OP
103-
]
104-
105-
ops = OPS_IN_MODEL + rms_ops + silu_mul_ops
106-
107-
for op in ops:
284+
model = model_class(quant=quant)
285+
torch.compile(model, backend=backend_func)(*model.example_inputs())
286+
torch.compile(model, backend=backend_no_func)(*model.example_inputs())
287+
288+
# check if the functionalization pass is applied
289+
for op in model.ops_in_model():
108290
find_auto_fn(backend_no_func.graph_post_pass.nodes, op)
109-
assert find_auto_fn_maybe(backend_func.graph_post_pass.nodes,
110-
op) is None # noqa: E501
291+
assert (find_auto_fn_maybe(backend_func.graph_post_pass.nodes, op)
292+
is None) # noqa: E501
111293

112294
# make sure the ops were all de-functionalized
113295
found = dict()
114296
for node in backend_func.graph_post_pass.nodes:
115-
for op in ops:
297+
for op in model.ops_in_model():
298+
if is_func(node, op):
299+
found[op] = True
300+
for op in model.ops_not_in_model():
116301
if is_func(node, op):
117302
found[op] = True
118-
assert all(found[op] for op in ops)
303+
assert all(found[op] for op in model.ops_in_model())
304+
assert all(not found.get(op) for op in model.ops_not_in_model())

0 commit comments

Comments
 (0)