-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
gemm_kernels.cu
526 lines (471 loc) · 22 KB
/
gemm_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/*
Adapted from https://github.com/mit-han-lab/llm-awq
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang,
Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023}
}
*/
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include "dequantize.cuh"
#include <cuda_fp16.h>
namespace vllm {
namespace awq {
template <int N>
__global__ void __launch_bounds__(64)
gemm_forward_4bit_cuda_m16nXk32(int G, int split_k_iters,
half* __restrict__ A, int* __restrict__ B,
half* __restrict__ scaling_factors,
int* __restrict__ zeros, int M, int IC,
int OC, half* __restrict__ C) {
// Only support matrix n = 64 or 128
assert(N == 64 || N == 128);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
assert(false);
#else
static constexpr uint32_t ZERO = 0x0;
float C_warp[32];
__shared__ half A_shared[16 * (32 + 8)];
__shared__ half B_shared[32 * (N + 8)];
int j_factors1 = ((OC + N - 1) / N);
int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
half A_shared_warp[8];
half B_shared_warp[N / 4];
for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
for (int i = 0; i < 8; ++i) {
C_warp[(j_0_4_init * 8) + i] = 0.0;
}
}
static constexpr int row_stride_warp = 32 * 8 / 32;
static constexpr int row_stride = 2 * 32 * 8 / N;
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
bool ld_A_flag =
(blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp +
threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
// bool wb_C_flag = (threadIdx.x / 4) < M;
half* A_ptr =
A +
(((int)blockIdx_y) / j_factors1 * 16 +
(((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) *
IC +
(((int)threadIdx.x) % (32 / 8)) * 8;
int* B_ptr = B + ((int)threadIdx.y) * (OC / 8) * (256 / N) +
(((int)threadIdx.x) / (N / 8)) * (OC / 8) +
(((int)blockIdx_y) % j_factors1) * (N / 8) +
(((int)threadIdx.x) % (N / 8)) * 1;
// Why * 1 in the above line?
half* A_shared_ptr = A_shared +
((int)threadIdx.y) * row_stride_warp * (32 + 8) +
(((int)threadIdx.x) / (32 / 8)) * (32 + 8) +
(((int)threadIdx.x) % (32 / 8)) * 8;
half* B_shared_ptr = B_shared +
((int)threadIdx.y) * (row_stride / 2) * (N + 8) +
(((int)threadIdx.x) / (N / 8)) * (N + 8) +
(((int)threadIdx.x) % (N / 8)) * 8;
int* zeros_ptr = zeros + (((int)blockIdx_y) % j_factors1) * (N / 8) +
((int)threadIdx.x) % (N / 8);
half* scaling_factors_ptr = scaling_factors +
(((int)blockIdx_y) % j_factors1) * N +
(((int)threadIdx.x) % (N / 8)) * 8;
half* C_ptr =
C +
static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
+ (((int)blockIdx_y) % j_factors1) * N + ((int)threadIdx.y) * (N / 2) +
(((int)threadIdx.x) % 4) * 2;
// preload s.f. and zeros
int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
__syncthreads();
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
if (ld_A_flag) {
*(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
} else {
*(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
}
// for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale =
*(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
/*
if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 &&
threadIdx.y == 0){ printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x,
B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x,
B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
}
*/
// uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
// B: 32 x 136 (128+8) float16
// each warp: 32 x 4
// each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus
// zero -> WB UINT4
// *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) *
// 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15)
// * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 *
// 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) *
// 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) *
// 8))); row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
uint32_t B_loaded =
*(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
// - zero and * scale
// TODO (Haotian): can save 4 assembly instructions if sormulate as deq =
// q * scale - zero * scale.
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.x)
: "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.x)
: "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.y)
: "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.y)
: "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.z)
: "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.z)
: "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.w)
: "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.w)
: "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
/*
if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 ==
0 && threadIdx.x == 17 && threadIdx.y == 0){ printf("[x] %X %X %X %X\n",
B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
}
*/
// write back
*(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) =
B_loaded_fp16;
}
__syncthreads();
for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
"addr; }\n"
: "=r"(addr)
: "l"((void*)((&(A_shared[(k_0_1 * 16)])) +
(((((int)threadIdx.x) & 15) * 40) +
((((int)threadIdx.x) >> 4) * 8)))));
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned*)(A_shared_warp + 0))[0]),
"=r"(((unsigned*)(A_shared_warp + 0))[1]),
"=r"(((unsigned*)(A_shared_warp + 0))[2]),
"=r"(((unsigned*)(A_shared_warp + 0))[3])
: "r"(addr));
}
for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
"addr; }\n"
: "=r"(addr)
: "l"((void*)((&(B_shared[(((k_0_1 * (N * 16 + 128)) +
(((int)threadIdx.y) * (N / 2))) +
(ax1_0 * 16))])) +
(((((int)threadIdx.x) & 15) * (N + 8)) +
((((int)threadIdx.x) >> 4) * 8)))));
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[0]),
"=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[1]),
"=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[2]),
"=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[3])
: "r"(addr));
}
}
for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[0]),
"r"(((unsigned*)(A_shared_warp + 0))[1]),
"r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[0]),
"r"(((unsigned*)(A_shared_warp + 0))[1]),
"r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[2]),
"r"(((unsigned*)(A_shared_warp + 0))[3]),
"r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[2]),
"r"(((unsigned*)(A_shared_warp + 0))[3]),
"r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#else
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
"%13};\n"
: "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[0]),
"r"(((unsigned*)(A_shared_warp + 0))[1]),
"r"(((unsigned*)(A_shared_warp + 0))[2]),
"r"(((unsigned*)(A_shared_warp + 0))[3]),
"r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
"r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
"f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
"%13};\n"
: "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned*)(A_shared_warp + 0))[0]),
"r"(((unsigned*)(A_shared_warp + 0))[1]),
"r"(((unsigned*)(A_shared_warp + 0))[2]),
"r"(((unsigned*)(A_shared_warp + 0))[3]),
"r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
"r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
"f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#endif
}
}
}
// TODO: Shang: Hoist loop invariance.
for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
for (int local_id = 0; local_id < 8; ++local_id) {
int row_offset = (((int)blockIdx_y) / j_factors1) * 16 +
((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
if (row_offset < M) {
*(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 +
local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
}
}
}
#endif
}
__global__ void __launch_bounds__(64)
dequantize_weights(int* __restrict__ B, half* __restrict__ scaling_factors,
int* __restrict__ zeros, half* __restrict__ C, int G) {
static constexpr uint32_t ZERO = 0x0;
half B_shared[32 * (128 + 8)];
half* B_shared_ptr2 = B_shared;
int N = blockDim.x * gridDim.x; // 2
int col = (blockIdx.x * blockDim.x + threadIdx.x);
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index1 = 8 * col + 8 * row * N;
half* C_ptr2 = C + index1;
int index2 = col + row * N;
int* B_ptr2 = B + index2;
int index3 = col + (int)(row / G) * N;
int* zeros_ptr2 = zeros + index3;
int index4 = 8 * col + (int)(row / G) * N * 8;
half* scaling_factors_ptr2 = scaling_factors + index4;
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
uint32_t B_loaded = *(uint32_t*)B_ptr2;
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.x)
: "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.x)
: "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.y)
: "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.y)
: "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.z)
: "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.z)
: "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n"
: "=r"(B_loaded_fp16.w)
: "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(B_loaded_fp16.w)
: "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
*(uint4*)B_shared_ptr2 = B_loaded_fp16;
for (int i = 0; i < 8; ++i) {
*(C_ptr2 + i) = B_shared[i];
}
}
} // namespace awq
} // namespace vllm
torch::Tensor awq_dequantize(torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros, int64_t split_k_iters,
int64_t thx, int64_t thy) {
int in_c = _kernel.size(0);
int qout_c = _kernel.size(1);
int out_c = qout_c * 8;
int G = in_c / _scaling_factors.size(0);
int x_thread = thx;
int y_thread = thy;
int x_blocks = 1;
int y_blocks = 1;
if (thx == 0) {
x_thread = qout_c;
}
if (thy == 0) {
y_thread = in_c;
}
if (thx == 0 && thy == 0) {
x_thread = 8;
y_thread = 8;
x_blocks = (int)(qout_c / 8);
y_blocks = (int)(in_c / 8);
}
const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
auto options = torch::TensorOptions()
.dtype(_scaling_factors.dtype())
.device(_scaling_factors.device());
at::Tensor _de_kernel = torch::empty({in_c, out_c}, options);
auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
auto scaling_factors =
reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
dim3 num_blocks(x_blocks, y_blocks);
dim3 threads_per_block(x_thread, y_thread);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::awq::dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
kernel, scaling_factors, zeros, de_kernel, G);
return _de_kernel;
}
// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now
torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
torch::Tensor _scaling_factors, torch::Tensor _zeros,
int64_t split_k_iters) {
int num_in_feats = _in_feats.size(0);
int num_in_channels = _in_feats.size(1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
auto options = torch::TensorOptions()
.dtype(_in_feats.dtype())
.device(_in_feats.device());
at::Tensor _out_feats =
torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
int num_out_feats = _out_feats.size(-2);
int num_out_channels = _out_feats.size(-1);
auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
auto scaling_factors =
reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
int group_size = num_in_channels / _scaling_factors.size(0);
if (num_out_channels % 64 != 0)
throw std::invalid_argument("OC is not multiple of cta_N = 64");
if (num_out_channels % 8 != 0)
throw std::invalid_argument("OC is not multiple of pack_num = 8");
if (group_size % 32 != 0)
throw std::invalid_argument("Group size should be a multiple of 32");
if (num_out_channels % group_size != 0)
throw std::invalid_argument("OC is not multiple of Group size");
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (num_out_channels % 128 == 0) {
int j_factors1 = num_out_channels / 128 / 1;
dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<128>
<<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
num_in_feats, num_in_channels, num_out_channels, out_feats);
} else if (num_out_channels % 64 == 0) {
int j_factors1 = num_out_channels / 64 / 1;
dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 *
split_k_iters);
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<64>
<<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
num_in_feats, num_in_channels, num_out_channels, out_feats);
}
return _out_feats.sum(0);
}