-
-
Notifications
You must be signed in to change notification settings - Fork 7.2k
/
Copy pathutils.py
528 lines (447 loc) · 17.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import functools
import os
import signal
import subprocess
import sys
import time
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
import openai
import pytest
import requests
from openai.types.completion import Completion
from transformers import AutoTokenizer
from typing_extensions import ParamSpec
from tests.models.utils import TextTextLogprobs
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.openai.cli_args import make_arg_parser
from vllm.model_executor.model_loader.loader import get_model_loader
from vllm.platforms import current_platform
from vllm.utils import (FlexibleArgumentParser, cuda_device_count_stateless,
get_open_port, is_hip)
if current_platform.is_rocm():
from amdsmi import (amdsmi_get_gpu_vram_usage,
amdsmi_get_processor_handles, amdsmi_init,
amdsmi_shut_down)
@contextmanager
def _nvml():
try:
amdsmi_init()
yield
finally:
amdsmi_shut_down()
elif current_platform.is_cuda():
from pynvml import (nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo,
nvmlInit, nvmlShutdown)
@contextmanager
def _nvml():
try:
nvmlInit()
yield
finally:
nvmlShutdown()
else:
@contextmanager
def _nvml():
yield
VLLM_PATH = Path(__file__).parent.parent
"""Path to root of the vLLM repository."""
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
def __init__(self,
model: str,
vllm_serve_args: List[str],
*,
env_dict: Optional[Dict[str, str]] = None,
auto_port: bool = True,
max_wait_seconds: Optional[float] = None) -> None:
if auto_port:
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
raise ValueError("You have manually specified the port "
"when `auto_port=True`.")
# Don't mutate the input args
vllm_serve_args = vllm_serve_args + [
"--port", str(get_open_port())
]
parser = FlexibleArgumentParser(
description="vLLM's remote OpenAI server.")
parser = make_arg_parser(parser)
args = parser.parse_args(["--model", model, *vllm_serve_args])
self.host = str(args.host or 'localhost')
self.port = int(args.port)
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:
engine_args = AsyncEngineArgs.from_cli_args(args)
model_config = engine_args.create_model_config()
load_config = engine_args.create_load_config()
model_loader = get_model_loader(load_config)
model_loader.download_model(model_config)
env = os.environ.copy()
# the current process might initialize cuda,
# to be safe, we should use spawn method
env['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
if env_dict is not None:
env.update(env_dict)
self.proc = subprocess.Popen(
["vllm", "serve", model, *vllm_serve_args],
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
max_wait_seconds = max_wait_seconds or 240
self._wait_for_server(url=self.url_for("health"),
timeout=max_wait_seconds)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.proc.terminate()
try:
self.proc.wait(3)
except subprocess.TimeoutExpired:
# force kill if needed
self.proc.kill()
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
while True:
try:
if requests.get(url).status_code == 200:
break
except Exception as err:
result = self.proc.poll()
if result is not None and result != 0:
raise RuntimeError("Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from err
@property
def url_root(self) -> str:
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)
def get_client(self):
return openai.OpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
)
def get_async_client(self):
return openai.AsyncOpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
max_retries=0,
)
def compare_two_settings(model: str,
arg1: List[str],
arg2: List[str],
env1: Optional[Dict[str, str]] = None,
env2: Optional[Dict[str, str]] = None,
max_wait_seconds: Optional[float] = None) -> None:
"""
Launch API server with two different sets of arguments/environments
and compare the results of the API calls.
Args:
model: The model to test.
arg1: The first set of arguments to pass to the API server.
arg2: The second set of arguments to pass to the API server.
env1: The first set of environment variables to pass to the API server.
env2: The second set of environment variables to pass to the API server.
"""
trust_remote_code = "--trust-remote-code"
if trust_remote_code in arg1 or trust_remote_code in arg2:
tokenizer = AutoTokenizer.from_pretrained(model,
trust_remote_code=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = "Hello, my name is"
token_ids = tokenizer(prompt)["input_ids"]
results = []
for args, env in ((arg1, env1), (arg2, env2)):
with RemoteOpenAIServer(model,
args,
env_dict=env,
max_wait_seconds=max_wait_seconds) as server:
client = server.get_client()
# test models list
models = client.models.list()
models = models.data
served_model = models[0]
results.append({
"test": "models_list",
"id": served_model.id,
"root": served_model.root,
})
# test with text prompt
completion = client.completions.create(model=model,
prompt=prompt,
max_tokens=5,
temperature=0.0)
results.append({
"test": "single_completion",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test using token IDs
completion = client.completions.create(
model=model,
prompt=token_ids,
max_tokens=5,
temperature=0.0,
)
results.append({
"test": "token_ids",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test seeded random sampling
completion = client.completions.create(model=model,
prompt=prompt,
max_tokens=5,
seed=33,
temperature=1.0)
results.append({
"test": "seeded_sampling",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test seeded random sampling with multiple prompts
completion = client.completions.create(model=model,
prompt=[prompt, prompt],
max_tokens=5,
seed=33,
temperature=1.0)
results.append({
"test":
"seeded_sampling",
"text": [choice.text for choice in completion.choices],
"finish_reason":
[choice.finish_reason for choice in completion.choices],
"usage":
completion.usage,
})
# test simple list
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
)
results.append({
"test": "simple_list",
"text0": batch.choices[0].text,
"text1": batch.choices[1].text,
})
# test streaming
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
stream=True,
)
texts = [""] * 2
for chunk in batch:
assert len(chunk.choices) == 1
choice = chunk.choices[0]
texts[choice.index] += choice.text
results.append({
"test": "streaming",
"texts": texts,
})
n = len(results) // 2
arg1_results = results[:n]
arg2_results = results[n:]
for arg1_result, arg2_result in zip(arg1_results, arg2_results):
assert arg1_result == arg2_result, (
f"Results for {model=} are not the same with {arg1=} and {arg2=}. "
f"{arg1_result=} != {arg2_result=}")
def init_test_distributed_environment(
tp_size: int,
pp_size: int,
rank: int,
distributed_init_port: str,
local_rank: int = -1,
) -> None:
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
world_size=pp_size * tp_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=local_rank)
ensure_model_parallel_initialized(tp_size, pp_size)
def multi_process_parallel(
tp_size: int,
pp_size: int,
test_target: Any,
) -> None:
import ray
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
# NOTE: We need to set working_dir for distributed tests,
# otherwise we may get import errors on ray workers
ray.init(runtime_env={"working_dir": VLLM_PATH})
distributed_init_port = get_open_port()
refs = []
for rank in range(tp_size * pp_size):
refs.append(
test_target.remote(tp_size, pp_size, rank, distributed_init_port))
ray.get(refs)
ray.shutdown()
@contextmanager
def error_on_warning():
"""
Within the scope of this context manager, tests will fail if any warning
is emitted.
"""
with warnings.catch_warnings():
warnings.simplefilter("error")
yield
def get_physical_device_indices(devices):
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES")
if visible_devices is None:
return devices
visible_indices = [int(x) for x in visible_devices.split(",")]
index_mapping = {i: physical for i, physical in enumerate(visible_indices)}
return [index_mapping[i] for i in devices if i in index_mapping]
@_nvml()
def wait_for_gpu_memory_to_clear(devices: List[int],
threshold_bytes: int,
timeout_s: float = 120) -> None:
# Use nvml instead of pytorch to reduce measurement error from torch cuda
# context.
devices = get_physical_device_indices(devices)
start_time = time.time()
while True:
output: Dict[int, str] = {}
output_raw: Dict[int, float] = {}
for device in devices:
if is_hip():
dev_handle = amdsmi_get_processor_handles()[device]
mem_info = amdsmi_get_gpu_vram_usage(dev_handle)
gb_used = mem_info["vram_used"] / 2**10
else:
dev_handle = nvmlDeviceGetHandleByIndex(device)
mem_info = nvmlDeviceGetMemoryInfo(dev_handle)
gb_used = mem_info.used / 2**30
output_raw[device] = gb_used
output[device] = f'{gb_used:.02f}'
print('gpu memory used (GB): ', end='')
for k, v in output.items():
print(f'{k}={v}; ', end='')
print('')
dur_s = time.time() - start_time
if all(v <= (threshold_bytes / 2**30) for v in output_raw.values()):
print(f'Done waiting for free GPU memory on devices {devices=} '
f'({threshold_bytes/2**30=}) {dur_s=:.02f}')
break
if dur_s >= timeout_s:
raise ValueError(f'Memory of devices {devices=} not free after '
f'{dur_s=:.02f} ({threshold_bytes/2**30=})')
time.sleep(5)
_P = ParamSpec("_P")
def fork_new_process_for_each_test(
f: Callable[_P, None]) -> Callable[_P, None]:
"""Decorator to fork a new process for each test function.
See https://github.com/vllm-project/vllm/issues/7053 for more details.
"""
@functools.wraps(f)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
# Make the process the leader of its own process group
# to avoid sending SIGTERM to the parent process
os.setpgrp()
from _pytest.outcomes import Skipped
pid = os.fork()
print(f"Fork a new process to run a test {pid}")
if pid == 0:
try:
f(*args, **kwargs)
except Skipped as e:
# convert Skipped to exit code 0
print(str(e))
os._exit(0)
except Exception:
import traceback
traceback.print_exc()
os._exit(1)
else:
os._exit(0)
else:
pgid = os.getpgid(pid)
_pid, _exitcode = os.waitpid(pid, 0)
# ignore SIGTERM signal itself
old_signal_handler = signal.signal(signal.SIGTERM, signal.SIG_IGN)
# kill all child processes
os.killpg(pgid, signal.SIGTERM)
# restore the signal handler
signal.signal(signal.SIGTERM, old_signal_handler)
assert _exitcode == 0, (f"function {f} failed when called with"
f" args {args} and kwargs {kwargs}")
return wrapper
def multi_gpu_test(*, num_gpus: int):
"""
Decorate a test to be run only when multiple GPUs are available.
"""
test_selector = getattr(pytest.mark, f"distributed_{num_gpus}_gpus")
test_skipif = pytest.mark.skipif(
cuda_device_count_stateless() < num_gpus,
reason=f"Need at least {num_gpus} GPUs to run the test.",
)
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
return test_selector(test_skipif(fork_new_process_for_each_test(f)))
return wrapper
async def completions_with_server_args(
prompts: List[str],
model_name: str,
server_cli_args: List[str],
num_logprobs: Optional[int],
max_wait_seconds: int = 240,
) -> Completion:
'''Construct a remote OpenAI server, obtain an async client to the
server & invoke the completions API to obtain completions.
Args:
prompts: test prompts
model_name: model to spin up on the vLLM server
server_cli_args: CLI args for starting the server
num_logprobs: Number of logprobs to report (or `None`)
max_wait_seconds: timeout interval for bringing up server.
Default: 240sec
Returns:
OpenAI Completion instance
'''
outputs = None
with RemoteOpenAIServer(model_name,
server_cli_args,
max_wait_seconds=max_wait_seconds) as server:
client = server.get_async_client()
outputs = await client.completions.create(model=model_name,
prompt=prompts,
temperature=0,
stream=False,
max_tokens=5,
logprobs=num_logprobs)
assert outputs is not None
return outputs
def get_client_text_generations(completions: Completion) -> List[str]:
'''Extract generated tokens from the output of a
request made to an Open-AI-protocol completions endpoint.
'''
return [x.text for x in completions.choices]
def get_client_text_logprob_generations(
completions: Completion) -> List[TextTextLogprobs]:
'''Operates on the output of a request made to an Open-AI-protocol
completions endpoint; obtains top-rank logprobs for each token in
each :class:`SequenceGroup`
'''
text_generations = get_client_text_generations(completions)
text = ''.join(text_generations)
return [(text_generations, text,
(None if x.logprobs is None else x.logprobs.top_logprobs))
for x in completions.choices]