File tree Expand file tree Collapse file tree 1 file changed +88
-3
lines changed
Expand file tree Collapse file tree 1 file changed +88
-3
lines changed Original file line number Diff line number Diff line change 1- Linear Regression
2- Hypothesis
31
4- Cost Fucntion
2+ # Supervise Learning
53
4+ ## Linear Regression
5+
6+ ### Hypothesis
7+
8+ ### Cost Fucntion
9+ ```
10+ J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{m}(\hat{y}_i-y_i)^2=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x_i)-y_i)^2
11+ ```
12+
13+
14+ ## Linear Regression with multiple variables
15+
16+ ### Hypothesis
17+
18+ ### Cost Fucntion
19+ ```
620J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{m}(\hat{y}_i-y_i)^2=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x_i)-y_i)^2
21+ ```
22+
23+ ### Gradient Descent
24+ ```
25+ repeat \hspace*{1mm} untill \hspace*{1mm} convergence: \{\\
26+ \hspace*{20mm} \theta_j:=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)}).x_j^{(i)} \hspace*{8mm} for \hspace*{1mm} j:=0..n
27+ \\\hspace*{6mm}\}
28+ ```
29+
30+ ## Logistic Regression
31+
32+ ### Hypothesis
33+ ```
34+ h_\theta(x)=g(\theta^Tx)
35+ ```
36+
37+ ### Cost Fucntion
38+ ```
39+ J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_\theta(x^{(i)}))
40+ ```
41+
42+ ### Gradient Descent
43+ ```
44+ repeat \hspace*{1mm} untill \hspace*{1mm} convergence: \{\\
45+ \hspace*{20mm} \theta_j:=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)}).x_j^{(i)} \hspace*{8mm} for \hspace*{1mm} j:=0..n
46+ \\\hspace*{6mm}\}
47+ ```
48+
49+ ## Logistic Regression with multiple variables
50+
51+ ### Hypothesis
52+ ```
53+ h_\theta(x)=g(\theta^Tx)
54+ ```
55+
56+ ### Cost Fucntion
57+ ```
58+ J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_\theta(x^{(i)})]+\frac{\lambda}{2m}\sum_{j=1}^n\theta_j^2
59+ ```
60+
61+ ### Gradient Descent
62+ ```
63+ Repeat: \{
64+ \\
65+ \hspace*{20mm}\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}
66+ \\
67+ \hspace*{20mm} \theta_j:=\theta_j-\alpha[(\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)})+\frac{\lambda}{m}\theta_j]\hspace*{8mm}j\epsilon{1,2,\dots n})
68+ \\
69+ \hspace*{6mm}\}
70+
71+ ## Nural Networks
72+
73+ ### Hypothesis
74+ ```
75+ h_\theta(x)=g(\theta^Tx)
76+ ```
77+
78+ ### Cost Fucntion
79+ ```
80+ J(\Theta)=-\frac{1}{m}\sum_{i=1}^{m}\sum_{k=1}^{k}[y^{(k)}log((h_\Theta(x^{(i)}))_k)+(1-y^{(i)}_k)log(1-(h_\Theta(x^{(i)})_k)]+\frac{\lambda}{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}(\theta_{j,i}^{(l)})^2
81+ ```
82+
83+ ### Gradient Descent
84+ ```
85+ Repeat: \{
86+ \\
87+ \hspace*{20mm}\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}
88+ \\
89+ \hspace*{20mm} \theta_j:=\theta_j-\alpha[(\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)})+\frac{\lambda}{m}\theta_j]\hspace*{8mm}j\epsilon{1,2,\dots n})
90+ \\
91+ \hspace*{6mm}\}
You can’t perform that action at this time.
0 commit comments