-
Notifications
You must be signed in to change notification settings - Fork 189
/
metric.py
41 lines (36 loc) · 1.28 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
F-Score metrics for testing classifier, also includes functions for data extraction.
Author: Vivek Narayanan
"""
import os
def get_paths():
"""
Returns supervised paths annotated with their actual labels.
"""
posfiles = [("./aclImdb/test/pos/" + f, True) for f in os.listdir("./aclImdb/test/pos/")]
negfiles = [("./aclImdb/test/neg/" + f, False) for f in os.listdir("./aclImdb/test/neg/")]
return posfiles + negfiles
def fscore(classifier, file_paths):
tpos, fpos, fneg, tneg = 0, 0, 0, 0
for path, label in file_paths:
result = classifier(open(path).read())
if label and result:
tpos += 1
elif label and (not result):
fneg += 1
elif (not label) and result:
fpos += 1
else:
tneg += 1
prec = 1.0 * tpos / (tpos + fpos)
recall = 1.0 * tpos / (tpos + fneg)
f1 = 2 * prec * recall / (prec + recall)
accu = 100.0 * (tpos + tneg) / (tpos+tneg+fpos+fneg)
# print "True Positives: %d\nFalse Positives: %d\nFalse Negatives: %d\n" % (tpos, fpos, fneg)
print "Precision: %lf\nRecall: %lf\nAccuracy: %lf" % (prec, recall, accu)
def main():
from altbayes import classify, train
train()
fscore(classify, get_paths())
if __name__ == '__main__':
main()