Skip to content

Commit a795b83

Browse files
author
Vineet John
committed
Added notes for A Hierarchical Neural Autoencoder for Paragraphs and Documents
1 parent 0ce1d28 commit a795b83

File tree

1 file changed

+42
-2
lines changed

1 file changed

+42
-2
lines changed

project-report/cs698_project_report.tex

Lines changed: 42 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@
55

66
\usepackage{hyperref}
77
\hypersetup{
8-
colorlinks=true,
9-
citecolor=blue
8+
colorlinks=true,
9+
citecolor=blue
1010
}
1111

1212

@@ -135,9 +135,49 @@ \section{A Neural Probabilistic Language Model} % (fold)
135135
\textbf{Goal of the paper:}
136136
Knowing the basic structure of a sentence, we should be able to create a new sentence by replacing parts of the old sentence with interchangeable elements.
137137

138+
\textbf{Challenges:}
139+
\begin{itemize}
140+
\item
141+
The main bottleneck for the neural computation is while computing the activations of the output layer
142+
\end{itemize}
143+
144+
\textbf{Optimizations:}
145+
\begin{itemize}
146+
\item
147+
Data parallel processing (different processor working on a different subsets of data) and asynchronous processor usage of shared memory.
148+
\end{itemize}
149+
138150
% section a_neural_probabilistic_language_model (end)
139151

140152

153+
\section{A Hierarchical Neural Autoencoder for Paragraphs and Documents} % (fold)
154+
\label{sec:a_hierarchical_neural_autoencoder_for_paragraphs_and_documents}
155+
156+
\begin{itemize}
157+
\item
158+
Attempts to build a paragraph embedding from the underlying word and sentence embeddings, and then proceeds to encode the paragraph embedding in an attempt to reconstruct the original paragraph.
159+
\item
160+
For this to happen, we need to preserve, syntactic, semantic and discourse related properties while creating the embedded representation.
161+
\item
162+
Hierarchical LSTM utilized to preserve sentence structure.
163+
\item
164+
\end{itemize}
165+
166+
\textbf{Implementation:}
167+
\begin{itemize}
168+
\item
169+
An LSTM layer to convert words into a vector representation of a sentence. Another LSTM layer after that to convert multiple sentences into a paragraph.
170+
\item
171+
Parameters are estimated by maximizing likelihood of outputs given inputs, similar to standard sequence-to-sequence models.
172+
\item
173+
Estimations are calculated using softmax functions to maximize the likelihood of the consituent words.
174+
\item
175+
Attention models using the hierarchical autoencoder could be utilized for dialogue systems, since it explicitly models for discourse.
176+
\end{itemize}
177+
178+
% section a_hierarchical_neural_autoencoder_for_paragraphs_and_documents (end)
179+
180+
141181
\newpage
142182

143183
\bibliographystyle{unsrt}

0 commit comments

Comments
 (0)