This repository has been archived by the owner on Feb 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathqkd.py
executable file
·182 lines (178 loc) · 5.67 KB
/
qkd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/python
from numpy import matrix
from math import pow, sqrt
from random import randint
import sys, argparse
class qubit():
def __init__(self,initial_state):
if initial_state:
self.__state = matrix([[0],[1]])
else:
self.__state = matrix([[1],[0]])
self.__measured = False
self.__H = (1/sqrt(2))*matrix([[1,1],[1,-1]])
self.__X = matrix([[0,1],[1,0]])
def show(self):
aux = ""
if round(matrix([1,0])*self.__state,2):
aux += "{0}|0>".format(str(round(matrix([1,0])*self.__state,2)) if round(matrix([1,0])*self.__state,2) != 1.0 else '')
if round(matrix([0,1])*self.__state,2):
if aux:
aux += " + "
aux += "{0}|1>".format(str(round(matrix([0,1])*self.__state,2)) if round(matrix([0,1])*self.__state,2) != 1.0 else '')
return aux
def measure(self):
if self.__measured:
raise Exception("Qubit already measured!")
M = 1000000
m = randint(0,M)
self.__measured = True
if m < round(pow(matrix([1,0])*self.__state,2),2)*M:
return 0
else:
return 1
def hadamard(self):
if self.__measured:
raise Exception("Qubit already measured!")
self.__state = self.__H*self.__state
def X(self):
if self.__measured:
raise Exception("Qubit already measured!")
self.__state = self.__X*self.__state
class quantum_user():
def __init__(self,name):
self.name = name
def send(self,data,basis):
"""
Uso base computacional |0> y |1> para los estados horizontal y vertical.
Uso base Hadamard |0> + |1> y |0> - |1> para los estados diagonales.
0 0 -> |0>
0 1 -> |1>
1 0 -> |0> + |1>
1 1 -> |0> - |1>
"""
assert len(data) == len(basis), "Basis and data must be the same length!"
qubits = list()
for i in range(len(data)):
if not basis[i]:
#Base computacional
if not data[i]:
qubits.append(qubit(0))
else:
qubits.append(qubit(1))
else:
#Base Hadamard
if not data[i]:
aux = qubit(0)
else:
aux = qubit(1)
aux.hadamard()
qubits.append(aux)
return qubits
def receive(self,data,basis):
assert len(data) == len(basis), "Basis and data must be the same length!"
bits = list()
for i in range(len(data)):
if not basis[i]:
bits.append(data[i].measure())
else:
data[i].hadamard()
bits.append(data[i].measure())
return bits
def generate_random_bits(N):
aux = list()
for i in range(N):
aux.append(randint(0,1))
return aux
def QKD(N,verbose=False,eve_present=False):
alice_basis = generate_random_bits(N)
alice_bits = generate_random_bits(N)
alice = quantum_user("Alice")
alice_qubits = alice.send(data=alice_bits,basis=alice_basis)
if eve_present:
eve_basis = generate_random_bits(N)
eve = quantum_user("Eve")
eve_bits = eve.receive(data=alice_qubits,basis=eve_basis)
alice_qubits = eve.send(data=eve_bits,basis=eve_basis)
bob_basis = generate_random_bits(N)
bob = quantum_user("Bob")
bob_bits = bob.receive(data=alice_qubits,basis=bob_basis)
alice_key = list()
bob_key = list()
for i in range(N):
if alice_basis[i] == bob_basis[i]:
alice_key.append(alice_bits[i])
bob_key.append(bob_bits[i])
if alice_key != bob_key:
key = False
length = None
print "Encription key mismatch, eve is present."
else:
key = True
length = len(bob_key)
print "Successfully exchanged key!"
print "Key Length: " + str(length)
if verbose:
print "Alice generates {0} random basis.".format(str(N))
raw_input()
print ''.join(str(e) for e in alice_basis)
raw_input()
print "Alice generates {0} random bits.".format(str(N))
raw_input()
print ''.join(str(e) for e in alice_bits)
raw_input()
print "Alice sends to Bob {0} encoded Qubits.".format(str(N))
raw_input()
aux = ""
for q in alice_qubits:
aux += q.show() + " "
print aux
raw_input()
if eve_present:
print "Eve intercepts Qubits!"
raw_input()
print ''.join(str(e) for e in eve_basis)
raw_input()
print "Eve's bits."
raw_input()
print ''.join(str(e) for e in eve_bits)
raw_input()
print "Bob generates {0} random basis.".format(str(N))
raw_input()
print ''.join(str(e) for e in bob_basis)
raw_input()
print "Bob receives and decodes Alice's Qubits."
raw_input()
print ''.join(str(e) for e in bob_bits)
raw_input()
print "Alice and Bob interchange basis through Internet and compare their basis."
raw_input()
#print "Key obtained: " + ''.join(str(e) for e in bob_bits)
#print "Efficiency: {0}%".format(str(round((float(len(key))/float(len(alice_bits)))*100.0)))
return key
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='BB84 QKD demonstration with Python.')
requiredNamed = parser.add_argument_group('Required arguments')
optionalNamed = parser.add_argument_group('Optional arguments')
requiredNamed.add_argument('-q','--qubits', required=True, help='Number of Qubits.')
optionalNamed.add_argument('-i','--iterate',required=False, help='Number of iterations.')
optionalNamed.add_argument('-e','--eve', action='store_true',default=False,required=False, help='Is EVE present?')
optionalNamed.add_argument('-v','--verbose', action='store_true',default=False,required=False, help='Verbose logs.')
args = parser.parse_args()
assert int(args.qubits)
ret = list()
if args.iterate:
assert int(args.iterate)
N = int(args.iterate)
else:
N = 1
for i in range(N):
print "############# {0} #############".format(str(i))
ret.append(QKD(int(args.qubits),verbose=args.verbose,eve_present=args.eve))
print "###############################".format(str(i))
print "############################"
print "############################"
t = "{0:.2f}".format(float(ret.count(True))*100.0/float(N))
u = "{0:.2f}".format(float(ret.count(False))*100.0/float(N))
print "True: {0} <{1}%>".format(ret.count(True),str(t))
print "False: {0} <{1}%>".format(ret.count(False),str(u))