-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
507 lines (428 loc) · 22.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF
import time
import warnings
import tempfile
import uuid
# Suppress the flash attention warning
warnings.filterwarnings("ignore", category=UserWarning, message=".*Torch was not compiled with flash attention.*")
# Define constants for model paths and UI title
CLIP_PATH = "google/siglip-so400m-patch14-384"
CHECKPOINT_PATH = Path("cgrkzexw-599808")
TITLE = "<h1><center>JoyCaption Alpha Two (2024-09-26a)</center></h1>"
# Define different caption types and their corresponding prompts
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
# Get HuggingFace token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Define the ImageAdapter class for processing image features
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
# Adjust input features if using deep extraction
if self.deep_extract:
input_features = input_features * 5
# Define neural network layers
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
# Process the vision outputs
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
# Apply layer normalization and positional embedding if enabled
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
# Apply linear layers and activation
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# Add <|image_start|> and <|image_end|> tokens
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
# Get the embedding for the end-of-text token
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# Load CLIP model
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
# Load custom vision model checkpoint
assert (CHECKPOINT_PATH / "clip_model.pt").exists()
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=True)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
# Set CLIP model to evaluation mode and move to GPU
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
# Load tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# Load language model
print("Loading LLM")
print("Loading VLM's custom text model")
text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", torch_dtype=torch.bfloat16).to("cuda").eval()
# Load image adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")
def save_caption(image_path, caption: str, input_folder: str = None):
"""
Save the caption to a text file with the same name as the image file.
"""
try:
if isinstance(image_path, str):
# For batch processing or single file input, use the original image path
if os.path.isabs(image_path):
# If it's an absolute path, use it directly
base_name = os.path.splitext(image_path)[0]
else:
# If it's a relative path, join it with the input_folder
full_path = os.path.join(input_folder, image_path)
base_name = os.path.splitext(full_path)[0]
caption_file = f"{base_name}.txt"
else:
# For Gradio interface, use a temporary file name in the input folder or current directory
if input_folder and os.path.isdir(input_folder):
temp_dir = input_folder
else:
temp_dir = os.getcwd() # Use current working directory as fallback
temp_filename = f"temp_caption_{uuid.uuid4()}.txt"
caption_file = os.path.join(temp_dir, temp_filename)
# Ensure the directory exists
os.makedirs(os.path.dirname(caption_file), exist_ok=True)
with open(caption_file, "w", encoding="utf-8") as f:
f.write(caption)
print(f"Caption saved to: {caption_file}")
except Exception as e:
print(f"Error saving caption: {str(e)}")
print(f"Attempted to save to: {caption_file}")
@spaces.GPU()
@torch.no_grad()
def stream_chat(input_images, input_folder: str, caption_type: str, caption_length: str | int, extra_option: str, name_input: str, custom_prompt: str, batch_size: int = 5) -> tuple[str, list[tuple[str, str]], str]:
torch.cuda.empty_cache()
start_time = time.time()
# Determine caption length
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt based on caption type and length
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra option to prompt
if extra_option != "None":
prompt_str += " " + extra_option
# Add name, length, word_count to prompt
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
# Use custom prompt if provided
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
# For debugging
print(f"Prompt: {prompt_str}")
# Determine if processing a single image or a batch
if input_images is not None:
# Single image processing
if isinstance(input_images, str):
image_files = [input_images]
batch_images = [Image.open(input_images).convert('RGB')]
else:
# Gradio Image component
image_files = [input_images]
batch_images = [input_images]
total_images = 1
else:
# Batch processing
image_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
total_images = len(image_files)
batch_images = None # We'll load these in batches
all_captions = []
progress_text = ""
# Process images in batches
for i in range(0, total_images, batch_size):
if batch_images is None:
batch_files = image_files[i:i+batch_size]
batch_images = []
for f in batch_files:
try:
img = Image.open(os.path.join(input_folder, f)).convert('RGB')
batch_images.append(img)
except Exception as e:
print(f"Error opening image {f}: {e}")
all_captions.append((f, f"Error: {str(e)}"))
# Adjust batch_size if the last batch is smaller
current_batch_size = len(batch_images)
else:
batch_files = image_files # For single image case
current_batch_size = 1
if not batch_images:
continue # Skip this iteration if no valid images were loaded
# Preprocess image batch
pixel_values = []
for image in batch_images:
if isinstance(image, gr.components.Image):
image = Image.fromarray(image.image)
image = image.resize((384, 384), Image.LANCZOS)
pv = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pv = TVF.normalize(pv, [0.5], [0.5])
pixel_values.append(pv)
pixel_values = torch.cat(pixel_values, dim=0).to('cuda')
# Embed image batch
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = image_adapter(vision_outputs.hidden_states)
embedded_images = embedded_images.to('cuda')
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0)
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0]
# Embed the tokens
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to('cuda'))
# Construct the input for each image in the batch
batch_input_embeds = []
batch_input_ids = []
batch_attention_mask = []
for img_embed in embedded_images:
# Combine conversation embeddings with image embeddings
input_embeds = torch.cat([
convo_embeds[:, :preamble_len],
img_embed.unsqueeze(0).to(dtype=convo_embeds.dtype),
convo_embeds[:, preamble_len:],
], dim=1).to('cuda')
# Create input IDs with placeholder zeros for image tokens
input_ids = torch.cat([
convo_tokens[:preamble_len].unsqueeze(0),
torch.zeros((1, img_embed.shape[0]), dtype=torch.long),
convo_tokens[preamble_len:].unsqueeze(0),
], dim=1).to('cuda')
# Create attention mask
attention_mask = torch.ones_like(input_ids)
batch_input_embeds.append(input_embeds)
batch_input_ids.append(input_ids)
batch_attention_mask.append(attention_mask)
# Stack batch inputs
batch_input_embeds = torch.cat(batch_input_embeds, dim=0)
batch_input_ids = torch.cat(batch_input_ids, dim=0)
batch_attention_mask = torch.cat(batch_attention_mask, dim=0)
# Generate captions for the batch
try:
generate_ids = text_model.generate(
batch_input_ids,
inputs_embeds=batch_input_embeds,
attention_mask=batch_attention_mask,
max_new_tokens=300,
do_sample=True,
suppress_tokens=None,
num_return_sequences=1,
)
# Trim off the prompt for each generated caption
generate_ids = generate_ids[:, batch_input_ids.shape[1]:]
# Process each generated caption
batch_captions = []
for j, file_name in enumerate(batch_files):
try:
caption_ids = generate_ids[j]
eos_token_id = tokenizer.eos_token_id
eot_token_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
# Find the first occurrence of either eos_token_id or eot_token_id
end_indices = torch.where((caption_ids == eos_token_id) | (caption_ids == eot_token_id))[0]
if len(end_indices) > 0:
end_index = end_indices[0].item()
caption_ids = caption_ids[:end_index]
# Decode the caption
caption = tokenizer.decode(caption_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
caption = caption.strip()
batch_captions.append(caption)
# Save caption to file
save_caption(file_name, caption, input_folder)
except Exception as e:
print(f"Error processing caption for image {file_name}: {e}")
batch_captions.append(f"Error: {str(e)}")
all_captions.extend(list(zip(batch_files, batch_captions)))
except Exception as e:
print(f"Error processing batch: {e}")
batch_captions = [f"Error: {str(e)}"] * len(batch_files)
all_captions.extend(list(zip(batch_files, batch_captions)))
# Update progress
progress = (i + current_batch_size) / total_images
elapsed_time = time.time() - start_time
eta = (elapsed_time / progress) * (1 - progress) if progress > 0 else 0
progress_text = f"Processing: {progress:.2%} complete | ETA: {eta:.2f} seconds"
yield prompt_str, all_captions, progress_text
if input_images is not None:
break # Exit after processing single image
# Clear batch_images for the next iteration
batch_images = None
progress_text = "Processing: 100% complete"
yield prompt_str, all_captions, progress_text
# Define the Gradio interface
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column(scale=1):
# Input components
input_image = gr.Image(label="Input Image", type="pil")
input_folder = gr.Textbox(label="Input Folder Path (for batch processing)")
caption_type = gr.Dropdown(
choices=["Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney", "Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing", "Social Media Post"],
label="Caption Type",
value="Descriptive",
)
caption_length = gr.Dropdown(
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
[str(i) for i in range(20, 261, 10)],
label="Caption Length",
value="long",
)
extra_option = gr.Dropdown(
choices=[
"None",
"If there is a person/character in the image you must refer to them as {name}.",
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
"Include information about lighting.",
"Include information about camera angle.",
"Include information about whether there is a watermark or not.",
"Include information about whether there are JPEG artifacts or not.",
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
"Do NOT include anything sexual; keep it PG.",
"Do NOT mention the image's resolution.",
"You MUST include information about the subjective aesthetic quality of the image from low to very high.",
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
"Do NOT mention any text that is in the image.",
"Specify the depth of field and whether the background is in focus or blurred.",
"If applicable, mention the likely use of artificial or natural lighting sources.",
"Do NOT use any ambiguous language.",
"Include whether the image is sfw, suggestive, or nsfw.",
"ONLY describe the most important elements of the image."
],
label="Extra Option",
value="None",
)
name_input = gr.Textbox(label="Person/Character Name (if applicable)")
gr.Markdown("**Note:** Name input is only used if the Extra Option requires it.")
custom_prompt = gr.Textbox(label="Custom Prompt (optional, will override all other settings)")
batch_size = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Batch Size")
single_caption_button = gr.Button("Caption Single Image")
batch_caption_button = gr.Button("Batch Caption")
with gr.Column(scale=2):
# Output components
output_prompt = gr.Textbox(label="Prompt that was used")
output_captions = gr.Dataframe(headers=["Image", "Caption"], label="Captions")
progress_bar = gr.Textbox(label="Progress")
def process_output(prompt, captions, progress):
return prompt, captions, progress
# Connect the buttons to the stream_chat function
single_caption_button.click(fn=stream_chat, inputs=[input_image, gr.Textbox(value=""), caption_type, caption_length, extra_option, name_input, custom_prompt, batch_size], outputs=[output_prompt, output_captions, progress_bar], postprocess=process_output)
batch_caption_button.click(fn=stream_chat, inputs=[gr.Image(value=None), input_folder, caption_type, caption_length, extra_option, name_input, custom_prompt, batch_size], outputs=[output_prompt, output_captions, progress_bar], postprocess=process_output)
if __name__ == "__main__":
demo.launch()