forked from whittlem/pycryptobot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrading.py
1277 lines (1000 loc) · 55.2 KB
/
Trading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Technical analysis on a trading Pandas DataFrame"""
import warnings
import pandas_ta as ta
from re import compile
from numpy import (
abs,
floor,
max,
maximum,
mean,
minimum,
nan,
ndarray,
round,
sum as np_sum,
where,
)
from pandas import concat, DataFrame, Series
from datetime import datetime, timedelta
from views.PyCryptoBot import RichText
class TechnicalAnalysis:
def __init__(self, data=DataFrame(), total_periods: int = 300, app: object = None) -> None:
"""Technical Analysis object model
Parameters
----------
data : Pandas Time Series
data[ts] = [ 'date', 'market', 'granularity', 'low', 'high', 'open', 'close', 'volume' ]
"""
if not isinstance(data, DataFrame):
raise TypeError("Data is not a Pandas dataframe.")
if (
"date" not in data
and "market" not in data
and "granularity" not in data
and "low" not in data
and "high" not in data
and "open" not in data
and "close" not in data
and "volume" not in data
):
raise ValueError("Data not not contain date, market, granularity, low, high, open, close, volume")
if "close" not in data.columns:
raise AttributeError("Pandas DataFrame 'close' column required.")
if not data["close"].dtype == "float64" and not data["close"].dtype == "int64":
raise AttributeError("Pandas DataFrame 'close' column not int64 or float64.")
# app
self.app = app
self.df = data
self.levels = []
self.total_periods = total_periods
def get_df(self) -> DataFrame:
"""Returns the Pandas DataFrame"""
return self.df
def add_all(self) -> None:
"""Adds analysis to the DataFrame"""
self.add_change_pcnt()
self.add_cma()
self.add_sma(5)
self.add_sma(8)
self.add_sma(13)
self.add_sma(20)
if self.total_periods >= 50:
self.add_sma(50)
if self.total_periods >= 200:
self.add_sma(200)
self.add_ema(8)
self.add_ema(12)
self.add_ema(26)
self.add_golden_cross()
self.add_death_cross()
self.add_bollinger_bands(20)
self.add_fibonacci_bollinger_bands()
self.add_support_resistance_levels(20)
self.add_rsi(14)
self.add_stochrsi(14)
self.add_williamsr(14)
self.add_macd()
self.add_obv()
self.add_elder_ray_index()
self.add_ema_buy_signals()
if self.total_periods >= 200:
self.add_sma_buy_signals()
self.add_macd_buy_signals()
self.add_adx_buy_signals()
self.add_bbands_buy_signals()
"""Candlestick References
https://commodity.com/technical-analysis
https://www.investopedia.com
https://github.com/SpiralDevelopment/candlestick-patterns
https://www.incrediblecharts.com/candlestick_patterns/candlestick-patterns-strongest.php
"""
def add_candles(self) -> None:
frames = [
self.candle_astral_buy(),
self.candle_astral_sell(),
self.candle_hammer(),
self.candle_inverted_hammer(),
self.candle_shooting_star(),
self.candle_hanging_man(),
self.candle_three_white_soldiers(),
self.candle_three_black_crows(),
self.candle_doji(),
self.candle_three_line_strike(),
self.candle_two_black_gapping(),
self.candle_morning_star(),
self.candle_evening_star(),
self.candle_abandoned_baby(),
self.candle_morning_doji_star(),
self.candle_evening_doji_star(),
]
df_candles = concat(frames, axis=1)
df_candles.columns = [
"astral_buy",
"astral_sell",
"hammer",
"inverted_hammer",
"shooting_star",
"hanging_man",
"three_white_soldiers",
"three_black_crows",
"doji",
"three_line_strike",
"two_black_gapping",
"morning_star",
"evening_star",
"abandoned_baby",
"morning_doji_star",
"evening_doji_star",
]
self.df = concat([self.df, df_candles], axis=1)
def candle_hammer(self) -> Series:
"""* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up"""
return (
((self.df["high"] - self.df["low"]) > 3 * (self.df["open"] - self.df["close"]))
& (((self.df["close"] - self.df["low"]) / (0.001 + self.df["high"] - self.df["low"])) > 0.6)
& (((self.df["open"] - self.df["low"]) / (0.001 + self.df["high"] - self.df["low"])) > 0.6)
)
def candle_shooting_star(self) -> Series:
"""* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")"""
return (
((self.df["open"].shift(1) < self.df["close"].shift(1)) & (self.df["close"].shift(1) < self.df["open"]))
& (self.df["high"] - maximum(self.df["open"], self.df["close"]) >= (abs(self.df["open"] - self.df["close"]) * 3))
& ((minimum(self.df["close"], self.df["open"]) - self.df["low"]) <= abs(self.df["open"] - self.df["close"]))
)
def candle_hanging_man(self) -> Series:
"""* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")"""
return (
((self.df["high"] - self.df["low"]) > (4 * (self.df["open"] - self.df["close"])))
& (((self.df["close"] - self.df["low"]) / (0.001 + self.df["high"] - self.df["low"])) >= 0.75)
& (((self.df["open"] - self.df["low"]) / (0.001 + self.df["high"] - self.df["low"])) >= 0.75)
& (self.df["high"].shift(1) < self.df["open"])
& (self.df["high"].shift(2) < self.df["open"])
)
def candle_inverted_hammer(self) -> Series:
"""* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")"""
return (
((self.df["high"] - self.df["low"]) > 3 * (self.df["open"] - self.df["close"]))
& ((self.df["high"] - self.df["close"]) / (0.001 + self.df["high"] - self.df["low"]) > 0.6)
& ((self.df["high"] - self.df["open"]) / (0.001 + self.df["high"] - self.df["low"]) > 0.6)
)
def candle_three_white_soldiers(self) -> Series:
"""*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")"""
return (
((self.df["open"] > self.df["open"].shift(1)) & (self.df["open"] < self.df["close"].shift(1)))
& (self.df["close"] > self.df["high"].shift(1))
& (self.df["high"] - maximum(self.df["open"], self.df["close"]) < (abs(self.df["open"] - self.df["close"])))
& ((self.df["open"].shift(1) > self.df["open"].shift(2)) & (self.df["open"].shift(1) < self.df["close"].shift(2)))
& (self.df["close"].shift(1) > self.df["high"].shift(2))
& (
self.df["high"].shift(1) - maximum(self.df["open"].shift(1), self.df["close"].shift(1))
< (abs(self.df["open"].shift(1) - self.df["close"].shift(1)))
)
)
def candle_three_black_crows(self) -> Series:
"""* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")"""
return (
((self.df["open"] < self.df["open"].shift(1)) & (self.df["open"] > self.df["close"].shift(1)))
& (self.df["close"] < self.df["low"].shift(1))
& (self.df["low"] - maximum(self.df["open"], self.df["close"]) < (abs(self.df["open"] - self.df["close"])))
& ((self.df["open"].shift(1) < self.df["open"].shift(2)) & (self.df["open"].shift(1) > self.df["close"].shift(2)))
& (self.df["close"].shift(1) < self.df["low"].shift(2))
& (
self.df["low"].shift(1) - maximum(self.df["open"].shift(1), self.df["close"].shift(1))
< (abs(self.df["open"].shift(1) - self.df["close"].shift(1)))
)
)
def candle_doji(self) -> Series:
"""! Candlestick Detected: Doji ("Indecision")"""
return (
((abs(self.df["close"] - self.df["open"]) / (self.df["high"] - self.df["low"])) < 0.1)
& ((self.df["high"] - maximum(self.df["close"], self.df["open"])) > (3 * abs(self.df["close"] - self.df["open"])))
& ((minimum(self.df["close"], self.df["open"]) - self.df["low"]) > (3 * abs(self.df["close"] - self.df["open"])))
)
def candle_three_line_strike(self) -> Series:
"""** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")"""
return (
((self.df["open"].shift(1) < self.df["open"].shift(2)) & (self.df["open"].shift(1) > self.df["close"].shift(2)))
& (self.df["close"].shift(1) < self.df["low"].shift(2))
& (
self.df["low"].shift(1) - maximum(self.df["open"].shift(1), self.df["close"].shift(1))
< (abs(self.df["open"].shift(1) - self.df["close"].shift(1)))
)
& ((self.df["open"].shift(2) < self.df["open"].shift(3)) & (self.df["open"].shift(2) > self.df["close"].shift(3)))
& (self.df["close"].shift(2) < self.df["low"].shift(3))
& (
self.df["low"].shift(2) - maximum(self.df["open"].shift(2), self.df["close"].shift(2))
< (abs(self.df["open"].shift(2) - self.df["close"].shift(2)))
)
& ((self.df["open"] < self.df["low"].shift(1)) & (self.df["close"] > self.df["high"].shift(3)))
)
def candle_two_black_gapping(self) -> Series:
"""*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")"""
return (
((self.df["open"] < self.df["open"].shift(1)) & (self.df["open"] > self.df["close"].shift(1)))
& (self.df["close"] < self.df["low"].shift(1))
& (self.df["low"] - maximum(self.df["open"], self.df["close"]) < (abs(self.df["open"] - self.df["close"])))
& (self.df["high"].shift(1) < self.df["low"].shift(2))
)
def candle_morning_star(self) -> Series:
"""*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")"""
return (
(maximum(self.df["open"].shift(1), self.df["close"].shift(1)) < self.df["close"].shift(2)) & (self.df["close"].shift(2) < self.df["open"].shift(2))
) & ((self.df["close"] > self.df["open"]) & (self.df["open"] > maximum(self.df["open"].shift(1), self.df["close"].shift(1))))
def candle_evening_star(self) -> ndarray:
"""*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")"""
return (
(minimum(self.df["open"].shift(1), self.df["close"].shift(1)) > self.df["close"].shift(2)) & (self.df["close"].shift(2) > self.df["open"].shift(2))
) & ((self.df["close"] < self.df["open"]) & (self.df["open"] < minimum(self.df["open"].shift(1), self.df["close"].shift(1))))
def candle_abandoned_baby(self):
"""** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")"""
return (
(self.df["open"] < self.df["close"])
& (self.df["high"].shift(1) < self.df["low"])
& (self.df["open"].shift(2) > self.df["close"].shift(2))
& (self.df["high"].shift(1) < self.df["low"].shift(2))
)
def candle_morning_doji_star(self) -> Series:
"""** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")"""
return (self.df["close"].shift(2) < self.df["open"].shift(2)) & (
abs(self.df["close"].shift(2) - self.df["open"].shift(2)) / (self.df["high"].shift(2) - self.df["low"].shift(2)) >= 0.7
) & (abs(self.df["close"].shift(1) - self.df["open"].shift(1)) / (self.df["high"].shift(1) - self.df["low"].shift(1)) < 0.1) & (
self.df["close"] > self.df["open"]
) & (
abs(self.df["close"] - self.df["open"]) / (self.df["high"] - self.df["low"]) >= 0.7
) & (
self.df["close"].shift(2) > self.df["close"].shift(1)
) & (
self.df["close"].shift(2) > self.df["open"].shift(1)
) & (
self.df["close"].shift(1) < self.df["open"]
) & (
self.df["open"].shift(1) < self.df["open"]
) & (
self.df["close"] > self.df["close"].shift(2)
) & (
(self.df["high"].shift(1) - maximum(self.df["close"].shift(1), self.df["open"].shift(1)))
> (3 * abs(self.df["close"].shift(1) - self.df["open"].shift(1)))
) & (
minimum(self.df["close"].shift(1), self.df["open"].shift(1)) - self.df["low"].shift(1)
) > (
3 * abs(self.df["close"].shift(1) - self.df["open"].shift(1))
)
def candle_evening_doji_star(self) -> Series:
"""** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")"""
return (self.df["close"].shift(2) > self.df["open"].shift(2)) & (
abs(self.df["close"].shift(2) - self.df["open"].shift(2)) / (self.df["high"].shift(2) - self.df["low"].shift(2)) >= 0.7
) & (abs(self.df["close"].shift(1) - self.df["open"].shift(1)) / (self.df["high"].shift(1) - self.df["low"].shift(1)) < 0.1) & (
self.df["close"] < self.df["open"]
) & (
abs(self.df["close"] - self.df["open"]) / (self.df["high"] - self.df["low"]) >= 0.7
) & (
self.df["close"].shift(2) < self.df["close"].shift(1)
) & (
self.df["close"].shift(2) < self.df["open"].shift(1)
) & (
self.df["close"].shift(1) > self.df["open"]
) & (
self.df["open"].shift(1) > self.df["open"]
) & (
self.df["close"] < self.df["close"].shift(2)
) & (
(self.df["high"].shift(1) - maximum(self.df["close"].shift(1), self.df["open"].shift(1)))
> (3 * abs(self.df["close"].shift(1) - self.df["open"].shift(1)))
) & (
minimum(self.df["close"].shift(1), self.df["open"].shift(1)) - self.df["low"].shift(1)
) > (
3 * abs(self.df["close"].shift(1) - self.df["open"].shift(1))
)
def candle_astral_buy(self) -> Series:
"""*** Candlestick Detected: Astral Buy (Fibonacci 3, 5, 8)"""
return (
(self.df["close"] < self.df["close"].shift(3))
& (self.df["low"] < self.df["low"].shift(5))
& (self.df["close"].shift(1) < self.df["close"].shift(4))
& (self.df["low"].shift(1) < self.df["low"].shift(6))
& (self.df["close"].shift(2) < self.df["close"].shift(5))
& (self.df["low"].shift(2) < self.df["low"].shift(7))
& (self.df["close"].shift(3) < self.df["close"].shift(6))
& (self.df["low"].shift(3) < self.df["low"].shift(8))
& (self.df["close"].shift(4) < self.df["close"].shift(7))
& (self.df["low"].shift(4) < self.df["low"].shift(9))
& (self.df["close"].shift(5) < self.df["close"].shift(8))
& (self.df["low"].shift(5) < self.df["low"].shift(10))
& (self.df["close"].shift(6) < self.df["close"].shift(9))
& (self.df["low"].shift(6) < self.df["low"].shift(11))
& (self.df["close"].shift(7) < self.df["close"].shift(10))
& (self.df["low"].shift(7) < self.df["low"].shift(12))
)
def candle_astral_sell(self) -> Series:
"""*** Candlestick Detected: Astral Sell (Fibonacci 3, 5, 8)"""
return (
(self.df["close"] > self.df["close"].shift(3))
& (self.df["high"] > self.df["high"].shift(5))
& (self.df["close"].shift(1) > self.df["close"].shift(4))
& (self.df["high"].shift(1) > self.df["high"].shift(6))
& (self.df["close"].shift(2) > self.df["close"].shift(5))
& (self.df["high"].shift(2) > self.df["high"].shift(7))
& (self.df["close"].shift(3) > self.df["close"].shift(6))
& (self.df["high"].shift(3) > self.df["high"].shift(8))
& (self.df["close"].shift(4) > self.df["close"].shift(7))
& (self.df["high"].shift(4) > self.df["high"].shift(9))
& (self.df["close"].shift(5) > self.df["close"].shift(8))
& (self.df["high"].shift(5) > self.df["high"].shift(10))
& (self.df["close"].shift(6) > self.df["close"].shift(9))
& (self.df["high"].shift(6) > self.df["high"].shift(11))
& (self.df["close"].shift(7) > self.df["close"].shift(10))
& (self.df["high"].shift(7) > self.df["high"].shift(12))
)
def add_adx_buy_signals(self, interval: int = 14) -> None:
"""Adds Average Directional Index (ADX) buy and sell signals to the DataFrame"""
data = self._average_directional_index(interval)
self.df["-di" + str(interval)] = data["-di" + str(interval)]
self.df["+di" + str(interval)] = data["+di" + str(interval)]
self.df["adx" + str(interval)] = data["adx" + str(interval)]
self.df["adx" + str(interval) + "_trend"] = data["adx" + str(interval) + "_trend"]
self.df["adx" + str(interval) + "_strength"] = data["adx" + str(interval) + "_strength"]
def add_adx(self, interval: int = 14) -> None:
"""Adds Average Directional Index (ADX)"""
data = self._average_directional_index(interval)
self.df["-di" + str(interval)] = data["-di" + str(interval)]
self.df["+di" + str(interval)] = data[["+di" + str(interval)]]
self.df["adx" + str(interval)] = data[["adx" + str(interval)]]
def _average_directional_index(self, interval: int = 14) -> DataFrame:
"""Average Directional Index (ADX)"""
if not isinstance(interval, int):
raise TypeError("interval parameter is not intervaleric.")
if interval > self.total_periods or interval < 5 or interval > 200:
raise ValueError("interval is out of range")
if len(self.df) < interval:
raise Exception("Data range too small.")
df = self.df.copy()
df["-dm"] = df["low"].shift(1) - df["low"]
df["+dm"] = df["high"] - df["high"].shift(1)
df["+dm"] = where((df["+dm"] > df["-dm"]) & (df["+dm"] > 0), df["+dm"], 0.0)
df["-dm"] = where((df["-dm"] > df["+dm"]) & (df["-dm"] > 0), df["-dm"], 0.0)
df["tr_tmp1"] = df["high"] - df["low"]
df["tr_tmp2"] = abs(df["high"] - df["close"].shift(1))
df["tr_tmp3"] = abs(df["low"] - df["close"].shift(1))
df["tr"] = df[["tr_tmp1", "tr_tmp2", "tr_tmp3"]].max(axis=1)
df["tr" + str(interval)] = df["tr"].rolling(interval).sum()
df["+dmi" + str(interval)] = df["+dm"].rolling(interval).sum()
df["-dmi" + str(interval)] = df["-dm"].rolling(interval).sum()
df["+di" + str(interval)] = df["+dmi" + str(interval)] / df["tr" + str(interval)] * 100
df["-di" + str(interval)] = df["-dmi" + str(interval)] / df["tr" + str(interval)] * 100
df["di" + str(interval) + "-"] = abs(df["+di" + str(interval)] - df["-di" + str(interval)])
df["di" + str(interval) + "+"] = df["+di" + str(interval)] + df["-di" + str(interval)]
df["dx"] = (df["di" + str(interval) + "-"] / df["di" + str(interval) + "+"]) * 100
df["adx" + str(interval)] = df["dx"].rolling(interval).mean()
df["-di" + str(interval)] = df["-di" + str(interval)].fillna(df["-di" + str(interval)].mean())
df["+di" + str(interval)] = df["+di" + str(interval)].fillna(df["+di" + str(interval)].mean())
df["adx" + str(interval)] = df["adx" + str(interval)].fillna(df["adx" + str(interval)].mean())
df["adx" + str(interval) + "_trend"] = where(df["+di" + str(interval)] > df["-di" + str(interval)], "bull", "bear")
df["adx" + str(interval) + "_strength"] = where(
df["adx" + str(interval)] > 25,
"strong",
where(df["adx" + str(interval)] < 20, "weak", "normal"),
)
return df[
[
"-di" + str(interval),
"+di" + str(interval),
"adx" + str(interval),
"adx" + str(interval) + "_trend",
"adx" + str(interval) + "_strength",
]
]
def add_atr(self, interval: int = 14) -> None:
"""Adds Average True Range (ATR)"""
self.df["atr" + str(interval)] = self._average_true_range(interval)
self.df["atr" + str(interval)] = self.df["atr" + str(interval)].fillna(self.df["atr" + str(interval)].mean())
def _average_true_range(self, interval: int = 14) -> DataFrame:
"""Average True Range (ATX)"""
if not isinstance(interval, int):
raise TypeError("interval parameter is not intervaleric.")
if interval > self.total_periods or interval < 5 or interval > 200:
raise ValueError("interval is out of range")
if len(self.df) < interval:
raise Exception("Data range too small.")
high_low = self.df["high"] - self.df["low"]
high_close = abs(self.df["high"] - self.df["close"].shift())
low_close = abs(self.df["low"] - self.df["close"].shift())
ranges = concat([high_low, high_close, low_close], axis=1)
true_range = max(ranges, axis=1)
return true_range.rolling(interval).sum() / interval
def change_pcnt(self) -> DataFrame:
"""Close change percentage"""
close_pc = self.df["close"] / self.df["close"].shift(1) - 1
close_pc = close_pc.fillna(0)
return close_pc
def add_change_pcnt(self) -> None:
"""Adds the close percentage to the DataFrame"""
self.df["close_pc"] = self.change_pcnt()
# cumulative returns
self.df["close_cpc"] = (1 + self.df["close_pc"]).cumprod() - 1
def cumulative_moving_average(self) -> float:
"""Calculates the Cumulative Moving Average (CMA)"""
return self.df.close.expanding().mean()
def add_cma(self) -> None:
"""Adds the Cumulative Moving Average (CMA) to the DataFrame"""
self.df["cma"] = self.cumulative_moving_average()
def exponential_moving_average(self, period: int) -> float:
"""Calculates the Exponential Moving Average (EMA)"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period > self.total_periods or period < 5 or period > 200:
raise ValueError("Period is out of range")
if len(self.df) < period:
raise Exception("Data range too small.")
return self.df.close.ewm(span=period, adjust=False).mean()
def add_bollinger_bands(self, period: int = 20, std: int = 2) -> None:
"""Adds the Exponential Moving Average (EMA) the DateFrame"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period > self.total_periods or period < 5 or period > 200:
raise ValueError("Period is out of range")
if len(self.df) < period:
raise Exception("Data range too small.")
df_tmp = ta.bbands(length=period, std=std, mamode="sma", close=self.df.close, fillna=self.df.close)
self.df["bb" + str(period) + "_upper"] = df_tmp[f"BBU_{period}_{std}.0"]
self.df["bb" + str(period) + "_mid"] = df_tmp[f"BBM_{period}_{std}.0"]
self.df["bb" + str(period) + "_lower"] = df_tmp[f"BBL_{period}_{std}.0"]
def add_ema(self, period: int) -> None:
"""Adds the Exponential Moving Average (EMA) the DateFrame"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period > self.total_periods or period < 5 or period > 200:
raise ValueError("Period is out of range")
if len(self.df) < period:
raise Exception("Data range too small.")
# self.df["ema" + str(period)] = self.exponential_moving_average(period)
self.df["ema" + str(period)] = ta.ema(self.df["close"], length=period, fillna=self.df.close)
def calculate_relative_strength_index(self, series: int, interval: int = 14) -> float:
"""Calculates the RSI on a Pandas series of closing prices."""
if not isinstance(series, Series):
raise TypeError("Pandas Series required.")
if not isinstance(interval, int):
raise TypeError("Interval integer required.")
if len(series) < interval:
raise IndexError("Pandas Series smaller than interval.")
diff = series.diff(1).dropna()
sum_gains = 0 * diff
sum_gains[diff > 0] = diff[diff > 0]
avg_gains = sum_gains.ewm(com=interval - 1, min_periods=interval).mean()
sum_losses = 0 * diff
sum_losses[diff < 0] = diff[diff < 0]
avg_losses = sum_losses.ewm(com=interval - 1, min_periods=interval).mean()
rs = abs(avg_gains / avg_losses)
rsi = 100 - 100 / (1 + rs)
return rsi
def calculate_stochastic_relative_strength_index(self, series: int, interval: int = 14) -> float:
"""Calculates the Stochastic RSI on a Pandas series of RSI"""
if not isinstance(series, Series):
raise TypeError("Pandas Series required.")
if not isinstance(interval, int):
raise TypeError("Interval integer required.")
if len(series) < interval:
raise IndexError("Pandas Series smaller than interval.")
return (series - series.rolling(interval).min()) / (series.rolling(interval).max() - series.rolling(interval).min())
def add_fibonacci_bollinger_bands(self, interval: int = 20, multiplier: int = 3) -> None:
"""Adds Fibonacci Bollinger Bands."""
if not isinstance(interval, int):
raise TypeError("Interval integer required.")
if not isinstance(multiplier, int):
raise TypeError("Multiplier integer required.")
tp = (self.df["high"] + self.df["low"] + self.df["close"]) / 3
sma = tp.rolling(interval).mean()
sd = multiplier * tp.rolling(interval).std()
sma = sma.fillna(0)
sd = sd.fillna(0)
self.df["fbb_mid"] = sma
self.df["fbb_upper0_236"] = sma + (0.236 * sd)
self.df["fbb_upper0_382"] = sma + (0.382 * sd)
self.df["fbb_upper0_5"] = sma + (0.5 * sd)
self.df["fbb_upper0_618"] = sma + (0.618 * sd)
self.df["fbb_upper0_786"] = sma + (0.786 * sd)
self.df["fbb_upper1"] = sma + (1 * sd)
self.df["fbb_lower0_236"] = sma - (0.236 * sd)
self.df["fbb_lower0_382"] = sma - (0.382 * sd)
self.df["fbb_lower0_5"] = sma - (0.5 * sd)
self.df["fbb_lower0_618"] = sma - (0.618 * sd)
self.df["fbb_lower0_786"] = sma - (0.786 * sd)
self.df["fbb_lower1"] = sma - (1 * sd)
def moving_average_convergence_divergence(self) -> DataFrame:
"""Calculates the Moving Average Convergence Divergence (MACD)"""
if len(self.df) < 26:
raise Exception("Data range too small.")
if not self.df["ema12"].dtype == "float64" and not self.df["ema12"].dtype == "int64":
raise AttributeError("Pandas DataFrame 'ema12' column not int64 or float64.")
if not self.df["ema26"].dtype == "float64" and not self.df["ema26"].dtype == "int64":
raise AttributeError("Pandas DataFrame 'ema26' column not int64 or float64.")
df = DataFrame()
df["macd"] = self.df["ema12"] - self.df["ema26"]
df["signal"] = df["macd"].ewm(span=9, adjust=False).mean()
return df
def add_macd(self, slow: int = 12, fast: int = 26) -> None:
"""Adds the Moving Average Convergence Divergence (MACD) to the DataFrame"""
# df = self.moving_average_convergence_divergence()
# self.df["macd"] = df["macd"]
# self.df["signal"] = df["signal"]
df_macd = ta.macd(self.df["close"], slow=slow, fast=fast, fillna=0)
df_macd.fillna(0, inplace=True)
df_macd.columns = ["macd", "histogram", "signal"]
self.df["macd"] = df_macd["macd"]
self.df["signal"] = df_macd["signal"]
def on_balance_volume(self) -> ndarray:
"""Calculate On-Balance Volume (OBV)"""
try:
return where(
self.df["close"] == self.df["close"].shift(1),
0,
where(
self.df["close"] > self.df["close"].shift(1),
self.df["volume"],
where(
self.df["close"] < self.df["close"].shift(1),
-self.df["volume"].apply(lambda x: float(x)),
self.df.iloc[0]["volume"],
),
),
).cumsum()
except Exception:
return 0
def add_obv(self) -> None:
"""Add the On-Balance Volume (OBV) to the DataFrame"""
self.df["obv"] = self.on_balance_volume()
self.df["obv_pc"] = self.df["obv"].pct_change() * 100
self.df["obv_pc"] = round(self.df["obv_pc"].fillna(0), 2)
def relative_strength_index(self, period) -> DataFrame:
"""Calculate the Relative Strength Index (RSI)"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period < 7 or period > 21:
raise ValueError("Period is out of range")
# calculate relative strength index
rsi = self.calculate_relative_strength_index(self.df["close"], period)
# default to midway-50 for first entries
rsi = rsi.fillna(50)
return rsi
def stochastic_relative_strength_index(self, period) -> DataFrame:
"""Calculate the Stochastic Relative Strength Index (Stochastic RSI)"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period < 7 or period > 21:
raise ValueError("Period is out of range")
if "rsi" + str(period) not in self.df:
self.add_rsi(period)
# calculate relative strength index
stochrsi = self.calculate_stochastic_relative_strength_index(self.df["rsi" + str(period)], period)
# default to midway-50 for first entries
stochrsi = stochrsi.fillna(0.5)
return stochrsi
def add_stochrsi(self, period: int = 14) -> None:
"""Adds the Stochastic RSI to the DataFrame"""
# df = self.moving_average_convergence_divergence()
# self.df["macd"] = df["macd"]
# self.df["signal"] = df["signal"]
df_stochrsi = ta.stochrsi(high=self.df["high"], close=self.df["close"], low=self.df["low"], interval=period, fillna=50)
df_stochrsi.fillna(0, inplace=True)
df_stochrsi.columns = ["stochrsik", "stochrsid"]
self.df[f"stochrsi{period}k"] = df_stochrsi["stochrsik"]
self.df[f"stochrsi{period}d"] = df_stochrsi["stochrsid"]
def williamsr(self, period) -> DataFrame:
"""Calculate the Williams %R"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period < 7 or period > 21:
raise ValueError("Period is out of range")
dividend = self.df["high"].rolling(14).max() - self.df["close"]
divisor = self.df["high"].rolling(14).max() - self.df["low"].rolling(14).min()
return (dividend / divisor) * -100
def add_rsi(self, period: int = 14) -> None:
"""Adds the Relative Strength Index (RSI) to the DataFrame"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period < 7 or period > 21:
raise ValueError("Period is out of range")
# self.df["rsi" + str(period)] = self.relative_strength_index(period)
# self.df["rsi" + str(period)] = self.df["rsi" + str(period)].replace(nan, 50)
self.df["rsi" + str(period)] = ta.rsi(self.df["close"], length=period, fillna=50)
def add_williamsr(self, period: int = 14) -> None:
"""Adds the Willams %R to the DataFrame"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period < 7 or period > 21:
raise ValueError("Period is out of range")
# self.df["williamsr" + str(period)] = self.williamsr(period)
# self.df["williamsr" + str(period)] = self.df["williamsr" + str(period)].replace(nan, -50)
self.df["williamsr" + str(period)] = ta.willr(high=self.df["high"], close=self.df["close"], low=self.df["low"], interval=period, fillna=self.df.close)
def simple_moving_average(self, period: int) -> float:
"""Calculates the Simple Moving Average (SMA)"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period > self.total_periods or period < 5 or period > 200:
raise ValueError("Period is out of range")
if len(self.df) < period:
raise Exception("Data range too small.")
return self.df.close.rolling(period, min_periods=1).mean()
def add_sma(self, period: int) -> None:
"""Add the Simple Moving Average (SMA) to the DataFrame"""
if not isinstance(period, int):
raise TypeError("Period parameter is not perioderic.")
if period > self.total_periods or period < 5 or period > 200:
raise ValueError("Period is out of range")
if len(self.df) < period:
raise Exception("Data range too small.")
# self.df["sma" + str(period)] = self.simple_moving_average(period)
self.df["sma" + str(period)] = ta.sma(self.df["close"], length=period, fillna=self.df.close)
def add_golden_cross(self) -> None:
"""Add Golden Cross SMA50 over SMA200"""
if self.total_periods < 200:
self.df["goldencross"] = False
return
if "sma50" not in self.df:
self.add_sma(50)
if "sma200" not in self.df:
self.add_sma(200)
self.df["goldencross"] = self.df["sma50"] > self.df["sma200"]
def add_death_cross(self) -> None:
"""Add Death Cross SMA50 over SMA200"""
if self.total_periods < 200:
self.df["deathcross"] = False
return
if "sma50" not in self.df:
self.add_sma(50)
if "sma200" not in self.df:
self.add_sma(200)
self.df["deathcross"] = self.df["sma50"] < self.df["sma200"]
def add_elder_ray_index(self, period: int = 14) -> None:
"""Add Elder Ray Index"""
# if "ema13" not in self.df:
# self.add_ema(13)
# self.df["elder_ray_bull"] = self.df["high"] - self.df["ema13"]
# self.df["elder_ray_bear"] = self.df["low"] - self.df["ema13"]
df_eri = ta.eri(high=self.df["high"], close=self.df["close"], low=self.df["low"], interval=period, fillna=0)
df_eri.fillna(0, inplace=True)
df_eri.columns = ["elder_ray_bull", "elder_ray_bear"]
self.df["elder_ray_bull"] = df_eri["elder_ray_bull"]
self.df["elder_ray_bear"] = df_eri["elder_ray_bear"]
# bear power’s value is negative but increasing (i.e. becoming less bearish)
# bull power’s value is increasing (i.e. becoming more bullish)
self.df["eri_buy"] = ((self.df["elder_ray_bear"] < 0) & (self.df["elder_ray_bear"] > self.df["elder_ray_bear"].shift(1))) | (
(self.df["elder_ray_bull"] > self.df["elder_ray_bull"].shift(1))
)
# bull power’s value is positive but decreasing (i.e. becoming less bullish)
# bear power’s value is decreasing (i.e., becoming more bearish)
self.df["eri_sell"] = ((self.df["elder_ray_bull"] > 0) & (self.df["elder_ray_bull"] < self.df["elder_ray_bull"].shift(1))) | (
(self.df["elder_ray_bear"] < self.df["elder_ray_bear"].shift(1))
)
def add_support_resistance_levels(self, window: int = 20) -> DataFrame:
# Calculate the rolling mean of the closing price using a window size of 20
self.df["rolling_mean"] = self.df["close"].rolling(window=window).mean()
# Calculate the rolling standard deviation of the closing price using a window size of 20
self.df["rolling_std"] = self.df["close"].rolling(window=window).std()
# Set the support level to the rolling mean minus two times the rolling standard deviation
self.df["support"] = self.df["rolling_mean"] - 2 * self.df["rolling_std"]
# Set the resistance level to the rolling mean plus two times the rolling standard deviation
self.df["resistance"] = self.df["rolling_mean"] + 2 * self.df["rolling_std"]
def get_support_resistance_levels(self) -> Series:
"""Calculate the Support and Resistance Levels"""
self.levels = []
self._calculate_support_resistence_levels()
levels_ts = {}
for level in self.levels:
levels_ts[self.df.index[level[0]]] = level[1]
# add the support levels to the DataFrame
return Series(levels_ts, dtype="float64")
def print_support_resistance_levels_v1(self, price: float = 0) -> None:
if isinstance(price, int) or isinstance(price, float):
df = self.get_support_resistance_levels()
if len(df) > 0:
df_last = df.tail(1)
if float(df_last[0]) < price:
RichText.notify(f"Support level of {str(df_last[0])} formed at {str(df_last.index[0])}", self.app, "normal")
elif float(df_last[0]) > price:
RichText.notify(f"Resistance level of {str(df_last[0])} formed at {str(df_last.index[0])}", self.app, "normal")
else:
RichText.notify(f"Support/Resistance level of {str(df_last[0])} formed at {str(df_last.index[0])}", self.app, "normal")
def print_support_resistance_levels_v2(self, price: float = 0) -> None:
if isinstance(price, int) or isinstance(price, float):
if "support" not in self.df.columns and "resistance" not in self.df.columns:
self.add_support_resistance_levels()
support, resistance = self.df[["support", "resistance"]].tail(1).values[0]
RichText.notify(f"Support level is {str(round(support, 4))} and Resistance level is {str(round(resistance, 4))}", self.app, "normal")
def get_resistance(self, price: float = 0) -> float:
if isinstance(price, int) or isinstance(price, float):
if price > 0:
sr = self.get_support_resistance_levels()
for r in sr.sort_values():
if r > price:
return r
return price
def get_fibonacci_upper(self, price: float = 0) -> float:
if isinstance(price, int) or isinstance(price, float):
if price > 0:
fb = self.get_fibonacci_retracement_levels()
for f in fb.values():
if f > price:
return f
return price
def get_trade_exit(self, price: float = 0) -> float:
if isinstance(price, int) or isinstance(price, float):
if price > 0:
r = self.get_resistance(price)
f = self.get_fibonacci_upper(price)
if price < r and price < f:
r_margin = ((r - price) / price) * 100
f_margin = ((f - price) / price) * 100
if r_margin > 1 and f_margin > 1 and r <= f:
return r
elif r_margin > 1 and f_margin > 1 and f <= r:
return f
elif r_margin > 1 and f_margin < 1:
return r
elif f_margin > 1 and r_margin < 1:
return f
return price
def print_support_resistance_fibonacci_levels(self, price: float = 0) -> str:
if isinstance(price, int) or isinstance(price, float):
if price > 0:
sr = self.get_support_resistance_levels()
s = price
for r in sr.sort_values():
if r > price:
fb = self.get_fibonacci_retracement_levels()
low = price
for b in fb.values():
if b > price:
return f"support: {str(s)}, resistance: {str(r)}, fibonacci (l): {str(low)}, fibonacci (u): {str(b)}"
else:
low = b
break
else:
s = r
if len(sr) > 1 and sr.iloc[-1] < price:
fb = self.get_fibonacci_retracement_levels()
low = price
for b in fb.values():
if b > price:
return f"support: {str(sr.iloc[-1])}, fibonacci (l): {str(low)}, fibonacci (u): {str(b)}"
else:
low = b
return ""
def add_bbands_buy_signals(self) -> None:
"""Adds the Bollinger Bands buy and sell signals to the DataFrame"""
if not isinstance(self.df, DataFrame):
raise TypeError("Pandas DataFrame required.")
if "close" not in self.df.columns:
raise AttributeError("Pandas DataFrame 'close' column required.")
if not self.df["close"].dtype == "float64" and not self.df["close"].dtype == "int64":
raise AttributeError("Pandas DataFrame 'close' column not int64 or float64.")
if "bb20_upper" not in self.df.columns:
self.add_bollinger_bands(20)
# true if close is above the upper band
self.df["closegtbb20_upper"] = self.df.close > self.df.bb20_upper
# true if the current frame is where close crosses over above
self.df["closegtbb20_upperco"] = self.df.closegtbb20_upper.ne(self.df.closegtbb20_upper.shift())
self.df.loc[self.df["closegtbb20_upper"] == False, "closegtbb20_upperco"] = False # noqa: E712
# true if close is below the middle band
self.df["closeltbb20_mid"] = self.df.close < self.df.bb20_mid
# true if the current frame is where close crosses over below
self.df["closeltbb20_midco"] = self.df.closeltbb20_mid.ne(self.df.closeltbb20_mid.shift())
self.df.loc[self.df["closeltbb20_mid"] == False, "closeltbb20_midco"] = False # noqa: E712