forked from endrikacupaj/CARTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
76 lines (62 loc) · 2.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import time
import random
import logging
import torch
import numpy as np
import torch.optim
import torch.nn as nn
from pathlib import Path
from model import CARTON
from dataset import CSQADataset
from utils import Predictor, Inference
# import constants
from constants import DEVICE, ROOT_PATH, ALL_QUESTION_TYPES, MODEL_NAME
from helpers import setup_logger
from args import get_parser
parser = get_parser()
args = parser.parse_args()
# set logger
logger = setup_logger(__name__,
loglevel=logging.INFO,
handlers=[logging.FileHandler(f'{args.path_results}/{MODEL_NAME}_{args.name}test_{args.question_type}.log', 'w'),
logging.StreamHandler()])
# set a seed value
random.seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available() and not args.no_cuda:
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
DEVICE = f"{DEVICE}:{args.cuda_device}"
else:
DEVICE = "cpu"
def main():
# load data
dataset = CSQADataset(args, splits=('test', )) # assuming we already have the correct vocab cache from all splits!
vocabs = dataset.get_vocabs()
inference_data = dataset.get_inference_data() # TODO: check and refactor this function
logger.info(f'Inference question type: {args.question_type}')
logger.info('Inference data prepared')
logger.info(f"Num of inference data: {len(inference_data)}")
# load model
model = CARTON(vocabs, DEVICE).to(DEVICE)
logger.info(f"=> loading checkpoint '{args.model_path}'")
checkpoint = torch.load(f'{ROOT_PATH}/{args.model_path}', encoding='latin1', map_location=DEVICE)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
logger.info(f"=> loaded checkpoint '{args.model_path}' (epoch {checkpoint['epoch']})")
# construct actions
# TODO: just scrap all this and make our own decoder of the model outputs!
inference = Inference(logger)
if args.question_type == 'all':
for qtype in ALL_QUESTION_TYPES:
args.question_type = qtype
predictor = Predictor(model, vocabs)
inference.construct_actions(inference_data, predictor)
args.question_type = 'all'
else:
predictor = Predictor(model, vocabs)
inference.construct_actions(inference_data, predictor)
if __name__ == '__main__':
main()