forked from endrikacupaj/CARTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
667 lines (571 loc) · 30 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
from __future__ import division
import re
import time
import json
import logging
import torch.nn as nn
from tqdm import tqdm
from torchmetrics.classification import MulticlassAccuracy, MulticlassRecall
import helpers
from action_executor.actions import search_by_label, create_entity
from collections import OrderedDict
from transformers import BertTokenizer
from elasticsearch import Elasticsearch
from rapidfuzz import process
from rapidfuzz.distance.Levenshtein import distance
from constants import *
from args import parse_and_get_args
args = parse_and_get_args()
# import CSQA ZODB KG
# set LOGGER
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.DEBUG)
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, optimizer, model_size=args.emb_dim, factor=args.factor, warmup=args.warmup):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def zero_grad(self):
self.optimizer.zero_grad()
# meter class for storing results
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name="meter"):
self.name = name
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Predictor(object):
"""Predictor class"""
def __init__(self, model, vocabs):
self.model = model
self.vocabs = vocabs
def predict(self, input):
"""Perform prediction on given input example"""
self.model.eval()
model_out = {}
# prepare input
tokenized_sentence = [START_TOKEN] + [t.lower() for t in input] + [CTX_TOKEN]
numericalized = [self.vocabs[INPUT].stoi[token] if token in self.vocabs[INPUT].stoi else self.vocabs[INPUT].stoi[UNK_TOKEN] for token in tokenized_sentence]
src_tensor = torch.LongTensor(numericalized).unsqueeze(0).to(DEVICE)
with torch.no_grad():
# get ner, coref predictions
encoder_step = self.model._predict_encoder(src_tensor)
# TODO: encoder_step contains [encoder_out, ner_out, coref_out]
encoder_out = encoder_step[ENCODER_OUT] # FIXME compatibility with CARTON
encoder_ctx = encoder_out[:, -1, :] # TODO: check this
ner_out = encoder_step[NER].argmax(1).tolist()
coref_out = encoder_step[COREF].argmax(1).tolist()
# get logical form, predicate and type prediction
lf_out = [self.vocabs[LOGICAL_FORM].stoi[START_TOKEN]]
pd_out = [self.vocabs[PREDICATE_POINTER].stoi[NA_TOKEN]]
tp_out = [self.vocabs[TYPE_POINTER].stoi[NA_TOKEN]]
for _ in range(self.model.decoder.max_positions):
lf_tensor = torch.LongTensor(lf_out).unsqueeze(0).to(DEVICE)
decoder_step = self.model._predict_decoder(src_tensor, lf_tensor, encoder_out)
decoder_out = decoder_step[DECODER_OUT]
decoder_h = decoder_step[DECODER_H]
stacked_pointer_out = self.model.stptr_net(encoder_ctx, decoder_h) # [bs*v, n_kg]
# TODO: what is the shape of this?, How do we infer the KG entries from this?
pred_lf = decoder_out.argmax(1)[-1].item()
pred_pd = stacked_pointer_out[PREDICATE_POINTER].argmax(1)[-1].item() # argmax(1) [bs*v, n_kg] -> [bs*v], [-1] [bs*v] -> last entry
pred_tp = stacked_pointer_out[TYPE_POINTER].argmax(1)[-1].item()
if pred_lf == self.vocabs[LOGICAL_FORM].stoi[END_TOKEN]:
break
lf_out.append(pred_lf)
pd_out.append(pred_pd)
tp_out.append(pred_tp)
# translate top predictions into vocab tokens
model_out[LOGICAL_FORM] = [self.vocabs[LOGICAL_FORM].itos[i] for i in lf_out][1:]
model_out[NER] = [self.vocabs[NER].itos[i] for i in ner_out][1:-1]
model_out[COREF] = [self.vocabs[COREF].itos[i] for i in coref_out][1:-1]
model_out[PREDICATE_POINTER] = [self.vocabs[PREDICATE_POINTER].itos[i] for i in pd_out][1:]
model_out[TYPE_POINTER] = [self.vocabs[TYPE_POINTER].itos[i] for i in tp_out][1:]
return model_out
class AccuracyMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.correct = 0
self.wrong = 0
self.accuracy = 0
def update(self, gold, result):
if gold == result:
self.correct += 1
else:
self.wrong += 1
self.accuracy = self.correct / (self.correct + self.wrong)
class Scorer(object):
"""Scorer class"""
def __init__(self):
self.tasks = [TOTAL, LOGICAL_FORM, NER, COREF, PREDICATE_POINTER, TYPE_POINTER]
self.results = {
OVERALL: {task:AccuracyMeter() for task in self.tasks},
CLARIFICATION: {task:AccuracyMeter() for task in self.tasks},
COMPARATIVE: {task:AccuracyMeter() for task in self.tasks},
LOGICAL: {task:AccuracyMeter() for task in self.tasks},
QUANTITATIVE: {task:AccuracyMeter() for task in self.tasks},
SIMPLE_COREFERENCED: {task:AccuracyMeter() for task in self.tasks},
SIMPLE_DIRECT: {task:AccuracyMeter() for task in self.tasks},
SIMPLE_ELLIPSIS: {task:AccuracyMeter() for task in self.tasks},
# -------------------------------------------
VERIFICATION: {task:AccuracyMeter() for task in self.tasks},
QUANTITATIVE_COUNT: {task:AccuracyMeter() for task in self.tasks},
COMPARATIVE_COUNT: {task:AccuracyMeter() for task in self.tasks},
}
self.data_dict = []
def data_score(self, data, helper, predictor):
"""Score complete list of data"""
for i, (example, q_type) in enumerate(zip(data, helper['question_type'])):
# prepare references
ref_lf = [t.lower() for t in example.logical_form]
ref_ner = example.ner
ref_coref = example.coref
ref_pd = example.predicate_pointer
ref_tp = example.type_pointer
ref_en = helper[ENTITY][LABEL][example.id[0]]
# get model hypothesis
hypothesis = predictor.predict(example.input)
# check correctness
correct_lf = 1 if ref_lf == hypothesis[LOGICAL_FORM] else 0
correct_ner = 1 if ref_ner == hypothesis[NER] else 0
correct_coref = 1 if ref_coref == hypothesis[COREF] else 0
correct_pd = 1 if ref_pd == hypothesis[PREDICATE_POINTER] else 0
correct_tp = 1 if ref_tp == hypothesis[TYPE_POINTER] else 0
# save results
gold = 1
res = 1 if correct_lf and correct_ner and correct_coref and correct_pd and correct_tp else 0
# Question type
self.results[q_type][TOTAL].update(gold, res)
self.results[q_type][LOGICAL_FORM].update(ref_lf, hypothesis[LOGICAL_FORM])
self.results[q_type][NER].update(ref_ner, hypothesis[NER])
self.results[q_type][COREF].update(ref_coref, hypothesis[COREF])
self.results[q_type][PREDICATE_POINTER].update(ref_pd, hypothesis[PREDICATE_POINTER])
self.results[q_type][TYPE_POINTER].update(ref_tp, hypothesis[TYPE_POINTER])
# Overall
self.results[OVERALL][TOTAL].update(gold, res)
self.results[OVERALL][LOGICAL_FORM].update(ref_lf, hypothesis[LOGICAL_FORM])
self.results[OVERALL][NER].update(ref_ner, hypothesis[NER])
self.results[OVERALL][COREF].update(ref_coref, hypothesis[COREF])
self.results[OVERALL][PREDICATE_POINTER].update(ref_pd, hypothesis[PREDICATE_POINTER])
self.results[OVERALL][TYPE_POINTER].update(ref_tp, hypothesis[TYPE_POINTER])
# save data
self.data_dict.append({
INPUT: example.input,
LOGICAL_FORM: hypothesis[LOGICAL_FORM],
f'{LOGICAL_FORM}_gold': ref_lf,
NER: hypothesis[NER],
f'{NER}_gold': ref_ner,
COREF: hypothesis[COREF],
f'{COREF}_gold': ref_coref,
PREDICATE_POINTER: hypothesis[PREDICATE_POINTER],
f'{PREDICATE_POINTER}_gold': ref_pd,
TYPE_POINTER: hypothesis[TYPE_POINTER],
f'{TYPE_POINTER}_gold': ref_tp,
# ------------------------------------
f'{LOGICAL_FORM}_correct': correct_lf,
f'{NER}_correct': correct_ner,
f'{COREF}_correct': correct_coref,
f'{PREDICATE_POINTER}_correct': correct_pd,
f'{TYPE_POINTER}_correct': correct_tp,
IS_CORRECT: res,
QUESTION_TYPE: q_type
})
if (i+1) % 500 == 0:
LOGGER.info(f'* {OVERALL} Data Results {i+1}:')
for task, task_result in self.results[OVERALL].items():
LOGGER.info(f'\t\t{task}: {task_result.accuracy:.4f}')
def write_results(self):
save_dict = json.dumps(self.data_dict, indent=4)
save_dict_no_space_1 = re.sub(r'": \[\s+', '": [', save_dict)
save_dict_no_space_2 = re.sub(r'",\s+', '", ', save_dict_no_space_1)
save_dict_no_space_3 = re.sub(r'"\s+\]', '"]', save_dict_no_space_2)
with open(f'{ROOT_PATH}/{args.path_error_analysis}/error_analysis.json', 'w', encoding='utf-8') as json_file:
json_file.write(save_dict_no_space_3)
def reset(self):
"""Reset object properties"""
self.results = []
self.instances = 0
class Inference(object):
def __init__(self, logger=LOGGER):
self.tokenizer = BertTokenizer.from_pretrained(BERT_BASE_UNCASED)
self.inference_actions = []
self.es = Elasticsearch(args.elastic_host, ca_certs=args.elastic_certs,
basic_auth=(args.elastic_user, args.elastic_password),
retry_on_timeout=True) # for inverse index search
self.logger = logger
def construct_actions(self, inference_data, predictor):
self.logger.info(f'Constructing actions for: {args.question_type}')
self.inference_actions = [] # clear inference actions from previous run
tic = time.perf_counter()
# based on model outpus create a final logical form to execute
question_type_inference_data = [data for data in inference_data if args.question_type in data[QUESTION_TYPE]]
for i, sample in tqdm(enumerate(question_type_inference_data)):
predictions = predictor.predict(sample[CONTEXT_QUESTION]) # NOTE: detokenized predictions!
actions = []
logical_form_prediction = predictions[LOGICAL_FORM]
ent_count_pos = 0 # counts how many ENTITY actions we encountered in the LF so far
for j, action in enumerate(logical_form_prediction):
if action not in [ENTITY, RELATION, TYPE, VALUE, PREV_ANSWER]:
actions.append([ACTION, action])
elif action == ENTITY: # ANCHOR: this is where we deal with filling the right entities to LF 'ENTITY' action
# get predictions
context_question = sample[CONTEXT_QUESTION]
ner_prediction = predictions[NER]
coref_prediction = predictions[COREF]
# get their indices
ner_indices = OrderedDict({k: tag.split('-')[-1] for k, tag in enumerate(ner_prediction) if
tag.startswith(B) or tag.startswith(I)}) # idx: type_id
coref_indices = OrderedDict({k: tag for k, tag in enumerate(coref_prediction) if tag not in ['NA']})
# create a ner dictionary with index as key and entity as value
ner_idx_ent = self.create_ner_idx_ent_dict(ner_indices, context_question) # {int: list[str]} ... {1: ['Q1', 'Q2'], 2: ['Q1', 'Q2'], 4: ['UNK'], 5: ['UNK']}
if str(ent_count_pos) not in list(coref_indices.values()):
if args.question_type in [CLARIFICATION, QUANTITATIVE_COUNT] and len(
list(coref_indices.values())) == ent_count_pos: # simple constraint for clarification and quantitative count
for l, (cidx, ctag) in enumerate(coref_indices.items()): # cidx = position in input ... ctag = desired position in LF
if ctag == str(ent_count_pos - 1):
if cidx in ner_idx_ent:
actions.append([ENTITY, ner_idx_ent[cidx][0]]) # NOTE: this is where we permute! BEWARE: we only take the first entity from list?!
break
else:
print(f'Coref index {cidx} not in ner entities!')
actions.append([ENTITY, ENTITY])
break
try:
actions.append([ENTITY, ner_idx_ent.popitem()[1][0]])
except:
print('No coref indices!')
actions.append([ENTITY, ENTITY])
elif args.question_type in [VERIFICATION, SIMPLE_DIRECT,
CLARIFICATION] and ent_count_pos == 0 and not coref_indices: # simple constraint for verification and simple question (direct)
try:
actions.append([ENTITY, ner_idx_ent.popitem()[1][0]])
except:
print('No coref indices!')
actions.append([ENTITY, ENTITY])
else:
# TODO here things get hard, we will need to use all ner entites and see if it works
print('No coref indices!')
actions.append([ENTITY, ENTITY])
else:
for l, (cidx, ctag) in enumerate(coref_indices.items()):
if ctag == str(ent_count_pos):
if cidx in ner_idx_ent:
actions.append([ENTITY, ner_idx_ent[cidx][0]])
break
else:
print(f'Coref index {cidx} not in ner entities!')
actions.append([ENTITY, ENTITY])
break
# update entity position counter
ent_count_pos += 1
elif action == RELATION:
predicate_prediction = predictions[PREDICATE_POINTER]
actions.append([RELATION, predicate_prediction[j]])
elif action == TYPE:
type_prediction = predictions[TYPE_POINTER]
actions.append([TYPE, type_prediction[j]])
elif action == VALUE:
try:
actions.append([VALUE, self.get_value(sample[QUESTION])])
except Exception as ex:
print(ex)
actions.append([VALUE, '0'])
elif action == PREV_ANSWER:
actions.append([ENTITY, PREV_ANSWER])
self.inference_actions.append({
QUESTION_TYPE: sample[QUESTION_TYPE],
QUESTION: sample[QUESTION],
ANSWER: sample[ANSWER],
ACTIONS: actions,
RESULTS: sample[RESULTS],
PREV_RESULTS: sample[PREV_RESULTS],
GOLD_ACTIONS: sample[GOLD_ACTIONS] if GOLD_ACTIONS in sample else [],
IS_CORRECT: 1 if GOLD_ACTIONS in sample and sample[GOLD_ACTIONS] == actions else 0
})
if (i+1) % 100 == 0:
toc = time.perf_counter()
print(f'==> Finished action construction {((i+1)/len(question_type_inference_data))*100:.2f}% -- {toc - tic:0.2f}s')
self.write_inference_actions()
def create_ner_idx_ent_dict(self, ner_indices, context_question):
"""
:param ner_indices: (OrderedDict[int: str]) {pos_idx: type_id} positions and types of entity entries
:param context_question: (list[str]) word list of current and previous (context) input from the user
:return ner_idx_ent: (OrderedDict[int: list[str]]) dictionary of candidate entities and their positions in context_question
eg: {1: ['Q1'], 2: ['Q1'], 5: ['Q2', 'Q3'], 6: ['Q2', 'Q3']} # can be ['UNK']
"""
ent_idx = []
ner_idx_ent = OrderedDict()
for index, span_type in ner_indices.items(): # index is just word order in the context question
if not ent_idx or index-1 == ent_idx[-1][0]: # NOTE: index-1 == ent_idx[-1][0] one entity will have continuous sequence
# populate ent_idx with all parts of one entity
ent_idx.append([index, span_type]) # check whether token start with ## then include previous token also from context_question
# [[0, 'Q123']]
# [[0, 'Q123'], [1, 'Q123']]
# ...
# until index jumps over to higher value than +1
else: # if ent_idx and index-1 != ent_idx[-1][0]:
# after ent_idx is populated, do search for this entity
# get ent tokens from input context
ent_tokens = [context_question[idx] for idx, _ in ent_idx]
# get string from tokens using tokenizer
ent_label = self.tokenizer.convert_tokens_to_string(ent_tokens).replace('##', '') # NOTE: this is label of one entity
ent_label = ent_label.replace("[SEP]", "").replace("NA", "").strip()
if ent_label == "":
break
# get elastic search results
es_results = search_by_label(self.es, ent_label, ent_idx[0][1], index=args.elastic_index_ent_full) # use type from B tag only (rest is redundant)
if not es_results:
# if no entity was found, generate new entity!
type_list = list(set([ent_idx[i][1] for i in range(len(ent_idx))]))
es_results = [create_entity(self.es, label=ent_label, types=type_list, production=args.production, logger=self.logger)]
# add indices to dict
for idx, _ in ent_idx:
ner_idx_ent[idx] = es_results
# clean ent_idx
ent_idx = [[index, span_type]]
if ent_idx: # NOTE: for the last entry to be considered as well
# get ent tokens from input context
ent_tokens = [context_question[idx] for idx, _ in ent_idx]
# get string from tokens using tokenizer
ent_label = self.tokenizer.convert_tokens_to_string(ent_tokens).replace('##', '') # NOTE: this is label of one entity
# get elastic search results
es_results = search_by_label(self.es, ent_label, ent_idx[0][1], index=args.elastic_index_ent_full) # use type from B tag only (rest is redundant)
if not es_results:
# if no entity was found, generate new entity!
type_list = list(set([ent_idx[i][1] for i in range(len(ent_idx))]))
es_results = [create_entity(self.es, label=ent_label, types=type_list, production=args.production, logger=self.logger)]
# add indices to dict
for idx, _ in ent_idx:
ner_idx_ent[idx] = es_results
return ner_idx_ent
def get_value(self, question):
if 'min' in question.split():
value = '0'
elif 'max' in question.split():
value = '0'
elif 'exactly' in question.split():
value = re.search(r'\d+', question.split('exactly')[1]).group()
elif 'approximately' in question.split():
value = re.search(r'\d+', question.split('approximately')[1]).group()
elif 'around' in question.split():
value = re.search(r'\d+', question.split('around')[1]).group()
elif 'atmost' in question.split():
value = re.search(r'\d+', question.split('atmost')[1]).group()
elif 'atleast' in question.split():
value = re.search(r'\d+', question.split('atleast')[1]).group()
else:
print(f'Could not extract value from question: {question}')
value = '0'
return value
def write_inference_actions(self):
with open(f'{ROOT_PATH}/{args.path_inference}/{args.model_path.rsplit("/", 1)[-1].rsplit(".", 2)[0]}_{args.question_type}.json', 'w', encoding='utf-8') as json_file:
json_file.write(json.dumps(self.inference_actions, indent=4))
def rapidfuzz_query(query, filter_type, kg, res_size=50):
"""
Fuzzy querry on entity labels and find maximum 'res_size' candidates for relevant entity ids based on Levenshtein distance
Filter resulting entity_ids by type
:return: list of filtered entity_ids or unfiltered entity_ids (if filtered is empty)
"""
max_dist = helpers.get_edit_distance(query)
res = process.extract(query, kg.labels['entity'], scorer=distance, score_cutoff=max_dist, limit=res_size)
unfiltered_res = []
filtered_res = []
for hit in res:
ent_id = hit[2]
# try to filter by types (if type exists in database)
try:
ent_type_list = kg.entity_type[ent_id] # filter by types
if filter_type in ent_type_list:
filtered_res.append(ent_id)
except KeyError:
print('x', end='')
unfiltered_res.append(ent_id)
return filtered_res if filtered_res else unfiltered_res
def save_checkpoint(state: dict, experiment: str = ""):
filename = ROOT_PATH.joinpath(args.snapshots).joinpath(experiment).joinpath(f"{MODEL_NAME}_{experiment}_e{state[EPOCH]}_v{state[CURR_VAL]:.4f}_{args.task}.pth.tar")
torch.save(state, filename)
class SingleTaskLoss(nn.Module):
'''Single Task Loss'''
def __init__(self, ignore_index, device=None):
super().__init__()
self.criterion = nn.CrossEntropyLoss(ignore_index=ignore_index)
def forward(self, output, target):
return self.criterion(output, target)
class SingleTaskAccuracy(nn.Module):
'''Single Task Accuracy (equivalent to "micro"-averaged accuracy)'''
def __init__(self, device=DEVICE):
super().__init__()
self.device = device
def forward(self, output, target):
# Assuming outputs and labels are torch tensors.
# Outputs could be raw logits or probabilities from the last layer of a neural network
# Convert outputs to predicted class indices if they are not already
preds = output.argmax(dim=1) if output.ndim > 1 else output # get token with max probability
# print(f"output ({output.ndim}|{preds.ndim}): {target}|{preds}")
correct = preds.eq(target).sum()
return correct.float() / target.size(0)
class MultiTaskAcc(nn.Module):
"""Multi Task Learning Accuracy Calculation"""
def __init__(self, device=DEVICE):
super().__init__()
self.device = device
self.lf_acc = SingleTaskAccuracy(self.device)
self.ner_acc = SingleTaskAccuracy(self.device)
self.coref_acc = SingleTaskAccuracy(self.device)
self.pp_acc = SingleTaskAccuracy(self.device)
self.tp_acc = SingleTaskAccuracy(self.device)
self.mml_emp = torch.Tensor([True, True, True, True, True])
self.log_vars = torch.nn.Parameter(torch.zeros(len(self.mml_emp)))
def forward(self, output, target):
# weighted loss
accs = torch.stack((
self.lf_acc(output[LOGICAL_FORM], target[LOGICAL_FORM]),
self.ner_acc(output[NER], target[NER]),
self.coref_acc(output[COREF], target[COREF]),
self.pp_acc(output[PREDICATE_POINTER], target[PREDICATE_POINTER]),
self.tp_acc(output[TYPE_POINTER], target[TYPE_POINTER]),
))
return {
LOGICAL_FORM: accs[0],
NER: accs[1],
COREF: accs[2],
PREDICATE_POINTER: accs[3],
TYPE_POINTER: accs[4],
MULTITASK: accs.mean()
}
class MultiTaskAccTorchmetrics(nn.Module):
"""Multi Task Learning Accuracy Calculation implemented via TorchMetrics."""
def __init__(self, num_classes: dict, pads: dict = None, device=DEVICE, averaging_type="macro",
module_names=(LOGICAL_FORM, NER, COREF, PREDICATE_POINTER, TYPE_POINTER)):
"""
:param averaging_type: if "micro": Equivalent to the MultiTaskAcc class (good for eval)
if "macro": Gives equal weight to all classes (good for training, not good for eval)
if "weighted" macro, but weighted by class importance TODO: understand better
"""
super().__init__()
self.module_names = module_names
self.multi_acc = {}
for name in self.module_names:
n_classes = num_classes[name]
if pads is not None:
ignore_idx = pads[name]
else:
ignore_idx = None
self.multi_acc[name] = MulticlassAccuracy(average=averaging_type, multidim_average='global',
num_classes=n_classes, ignore_index=ignore_idx).to(device)
def forward(self, output, target):
# weighted loss
accs = torch.stack([self.multi_acc[mn](output[mn], target[mn]) for mn in self.module_names])
results = {mn: accs[i] for i, mn in enumerate(self.module_names)}
results[MULTITASK] = accs.mean()
return results
class MultiTaskRecTorchmetrics(nn.Module):
"""Multi Task Learning Macro-averaged Recall Calculation implemented via torchmetrics"""
def __init__(self, num_classes: dict, pads: dict = None, device=DEVICE, averaging_type="macro",
module_names=(LOGICAL_FORM, NER, COREF, PREDICATE_POINTER, TYPE_POINTER)):
super().__init__()
self.module_names = module_names
self.multi_rec = {}
for name in self.module_names:
n_classes = num_classes[name]
if pads is not None:
ignore_idx = pads[name]
else:
ignore_idx = None
self.multi_rec[name] = MulticlassRecall(average=averaging_type, multidim_average='global',
num_classes=n_classes, ignore_index=ignore_idx).to(device)
def forward(self, output, target):
# weighted loss
recalls = torch.stack([self.multi_rec[mn](output[mn], target[mn]) for mn in self.module_names])
results = {mn: recalls[i] for i, mn in enumerate(self.module_names)}
results[MULTITASK] = recalls.mean()
# for mn in self.module_names:
# print(f"{output[mn].shape}|{target[mn].shape}")
return results
class MultiTaskLoss(nn.Module):
"""Multi Task Learning Loss"""
def __init__(self, ignore_index, device=DEVICE):
super().__init__()
self.device = device
self.lf_loss = SingleTaskLoss(ignore_index)
self.ner_loss = SingleTaskLoss(ignore_index)
self.coref_loss = SingleTaskLoss(ignore_index)
self.pred_pointer = SingleTaskLoss(ignore_index)
self.type_pointer = SingleTaskLoss(ignore_index)
self.mml_emp = torch.Tensor([True, True, True, True, True])
self.log_vars = torch.nn.Parameter(torch.zeros(len(self.mml_emp)))
def forward(self, output, target):
# weighted loss
task_losses = torch.stack((
self.lf_loss(output[LOGICAL_FORM], target[LOGICAL_FORM]),
self.ner_loss(output[NER], target[NER]),
self.coref_loss(output[COREF], target[COREF]),
self.pred_pointer(output[PREDICATE_POINTER], target[PREDICATE_POINTER]),
self.type_pointer(output[TYPE_POINTER], target[TYPE_POINTER]),
))
dtype = task_losses.dtype
stds = (torch.exp(self.log_vars)**(1/2)).to(self.device).to(dtype)
weights = 1 / ((self.mml_emp.to(self.device).to(dtype)+1)*(stds**2))
losses = weights * task_losses + torch.log(stds)
return {
LOGICAL_FORM: losses[0],
NER: losses[1],
COREF: losses[2],
PREDICATE_POINTER: losses[3],
TYPE_POINTER: losses[4],
MULTITASK: losses.mean()
}[args.task]
def init_weights(model):
# initialize model parameters with Glorot / fan_avg
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
# ANCHOR LASAGNE parameter initialisation
def Embedding(num_embeddings, embedding_dim, padding_idx):
"""Embedding layer"""
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.uniform_(m.weight, -0.1, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
"""Linear layer"""
m = nn.Linear(in_features, out_features, bias=bias)
m.weight.data.uniform_(-0.1, 0.1)
if bias:
m.bias.data.uniform_(-0.1, 0.1)
return m
def LSTM(input_size, hidden_size, **kwargs):
"""LSTM layer"""
m = nn.LSTM(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if 'weight' in name or 'bias' in name:
param.data.uniform_(-0.1, 0.1)
return m