forked from endrikacupaj/CARTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
360 lines (281 loc) · 14.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import json
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# import constants
from constants import *
from args import parse_and_get_args
args = parse_and_get_args()
class CARTON(nn.Module):
def __init__(self, vocabs, device=DEVICE):
super(CARTON, self).__init__()
self.vocabs = vocabs
self.device = device
self.encoder = Encoder(vocabs[INPUT], self.device)
self.decoder = Decoder(vocabs[LOGICAL_FORM], self.device)
self.ner = NerNet(len(vocabs[NER]))
self.coref = CorefNet(len(vocabs[COREF]))
self.stptr_net = StackedPointerNetworks(vocabs[PREDICATE_POINTER], vocabs[TYPE_POINTER], self.device)
def forward(self, src_tokens, trg_tokens):
encoder_out = self.encoder(src_tokens)
ner_out, ner_h = self.ner(encoder_out) # ANCHOR: LASAGNE
coref_out = self.coref(torch.cat([encoder_out, ner_h], dim=-1)) # ANCHOR: LASAGNE
decoder_out, decoder_h = self.decoder(src_tokens, trg_tokens, encoder_out)
encoder_ctx = encoder_out[:, -1:, :] # ANCHOR [batch_size, time, encoder_dim]
stacked_pointer_out = self.stptr_net(encoder_ctx, decoder_h) # ANCHOR encoder context vector
return {
LOGICAL_FORM: decoder_out,
PREDICATE_POINTER: stacked_pointer_out[PREDICATE_POINTER], # (bs, lf_actions*n_predicates)
TYPE_POINTER: stacked_pointer_out[TYPE_POINTER], # (bs, lf_actions*n_types)
NER: ner_out,
COREF: coref_out
}
# ANCHOR: LASAGNE
def _predict_encoder(self, src_tensor):
with torch.no_grad():
encoder_out = self.encoder(src_tensor)
ner_out, ner_h = self.ner(encoder_out)
coref_out = self.coref(torch.cat([encoder_out, ner_h], dim=-1))
return {
ENCODER_OUT: encoder_out,
NER: ner_out,
COREF: coref_out
}
def _predict_decoder(self, src_tokens, trg_tokens, encoder_out):
with torch.no_grad():
decoder_out, decoder_h = self.decoder(src_tokens, trg_tokens, encoder_out)
encoder_ctx = encoder_out[:, -1:, :]
return {
DECODER_OUT: decoder_out,
DECODER_H: decoder_h,
}
class LstmFlatten(nn.Module):
def forward(self, x):
return x[0].squeeze(1)
class Flatten(nn.Module):
def forward(self, x):
return x.contiguous().view(-1, x.shape[-1])
# ANCHOR: BIO entity labeling (annotator)
# Finding all entities in the input utterance (BIO & types)
class NerNet(nn.Module):
def __init__(self, tags: int, dropout: float = args.dropout):
super(NerNet, self).__init__()
self.ner_lstm = nn.Sequential(
nn.LSTM(input_size=args.emb_dim, hidden_size=args.emb_dim, batch_first=True),
LstmFlatten(),
nn.LeakyReLU()
)
self.ner_linear = nn.Sequential(
Flatten(),
nn.Dropout(dropout),
nn.Linear(args.emb_dim, tags)
# TODO: add Softmax?
)
def forward(self, x):
h = self.ner_lstm(x)
return self.ner_linear(h), h
# ANCHOR: COREF is not training! something must be wrong with pred/target labels to calculate loss?
class CorefNet(nn.Module):
def __init__(self, tags, dropout=args.dropout):
super(CorefNet, self).__init__()
self.seq_net = nn.Sequential(
nn.Linear(args.emb_dim * 2, args.emb_dim),
nn.LeakyReLU(),
Flatten(),
nn.Dropout(dropout),
nn.Linear(args.emb_dim, tags),
# TODO: add Softmax?
)
def forward(self, x):
return self.seq_net(x)
class PointerStack(nn.Module):
def __init__(self, vocab, device: str):
super(PointerStack, self).__init__()
self.device = device
self.kg_items = torch.tensor(list(vocab.stoi.values())).to(self.device)
self.embeddings = nn.Embedding(len(vocab), args.emb_dim)
self.dropout = nn.Dropout(args.dropout)
self.tahn = nn.Tanh()
self.flatten = Flatten()
hidden = []
# create ptr_n_hidden Linear+ReLU layers with halving sizes of emb_dim
for i in range(args.ptr_n_hidden):
hidden.append(nn.Linear(args.emb_dim // (2 ** i), args.emb_dim // (2 ** (i + 1))))
hidden.append(nn.ReLU())
self.lin_hidden = nn.Sequential(*hidden)
self.linear_out = nn.Linear(args.emb_dim//(2**args.ptr_n_hidden), 1)
def forward(self, x): # ANCHOR Pointer network
# x.shape: [25, n, 1, 300] ... inputed from ANCHOR@StackedPointerNetworks forward function
embed = self.embeddings(self.kg_items).unsqueeze(0)
# print(f"before: {x.shape}") # torch.Size([25, 18, 1, 300])
x = x.expand(x.shape[0], x.shape[1], embed.shape[1], x.shape[-1])
# print(f"after: {x.shape}") # torch.Size([25, 18, 1560, 300])
x = x + embed.expand(x.shape[0], x.shape[1], embed.shape[1], embed.shape[-1])
# print(f"forever_after: {x.shape}") # torch.Size([25, 18, 1560, 300])
x = self.tahn(x)
x = self.lin_hidden(x)
x = self.linear_out(x)
# print(f"after linear: {x.shape}") # torch.Size([25, 18, 1560, 1])
x = x.squeeze(-1)
# print(f"after squeeze: {x.shape}") # torch.Size([25, 18, 1560])
x = self.flatten(x)
# print(f"after flatten: {x.shape}") # torch.Size([450, 1560]) !!! torch.Flatten class is overridden
return x
class StackedPointerNetworks(nn.Module):
def __init__(self, predicate_vocab, type_vocab, device: str):
super(StackedPointerNetworks, self).__init__()
self.device = device
self.context_linear = nn.Linear(args.emb_dim*2, args.emb_dim)
self.dropout = nn.Dropout(args.dropout)
self.predicate_pointer = PointerStack(predicate_vocab, self.device)
self.type_pointer = PointerStack(type_vocab, self.device)
def forward(self, encoder_ctx, decoder_h):
x = torch.cat([encoder_ctx.expand(decoder_h.shape), decoder_h], dim=-1) # ANCHOR: this is gonna be problematic!
# TODO: each entry in decoder_h is concatenated by encoder_h
# e.g. expand([25, 1, 300], dim=1, n) concat with [25, n, 300] => [25, n, 600]
x = self.context_linear(x).unsqueeze(2) # [25, n, 600] => [25, n, 1, 300]
x = self.dropout(x)
return {
PREDICATE_POINTER: self.predicate_pointer(x),
TYPE_POINTER: self.type_pointer(x),
}
class Encoder(nn.Module):
def __init__(self, vocabulary, device, embed_dim_out=args.emb_dim, layers=args.layers,
heads=args.heads, pf_dim=args.pf_dim, dropout=args.dropout, max_positions=args.max_positions):
super().__init__()
input_dim = len(vocabulary)
self.padding_idx = vocabulary.stoi[PAD_TOKEN]
self.dropout = dropout
self.device = device
input_dim, embed_dim = vocabulary.vectors.size()
self.scale = math.sqrt(embed_dim)
self.embed_tokens = nn.Embedding(input_dim, embed_dim)
self.embed_tokens.weight.data.copy_(vocabulary.vectors)
self.embed_positions = PositionalEmbedding(embed_dim, dropout, max_positions)
# Feed-Forward layer to transform fixed Emb vector dimensions
self.ff_emb = nn.Linear(embed_dim, embed_dim_out, True, device) # ANCHOR EMBDIM: if you want args.emb_dim different than 300, uncomment this
# Stack Encoder Transformer Layers
self.layers = nn.ModuleList([EncoderLayer(embed_dim_out, heads, pf_dim, dropout, device) for _ in range(layers)])
def forward(self, src_tokens):
src_mask = (src_tokens != self.padding_idx).unsqueeze(1).unsqueeze(2)
x = self.embed_tokens(src_tokens) * self.scale
x += self.embed_positions(src_tokens)
# print(x.shape) # torch.Size([batch size, utterance length, emb_dim_size]) torch.Size([25, 43, 300])
# x = self.ff_emb(x) # ANCHOR EMBDIM: if you want args.emb_dim different than 300, uncomment this
x = F.dropout(x, p=self.dropout, training=self.training)
for layer in self.layers:
x = layer(x, src_mask)
return x
class EncoderLayer(nn.Module):
def __init__(self, embed_dim, heads, pf_dim, dropout, device):
super().__init__()
self.layer_norm = nn.LayerNorm(embed_dim)
self.self_attn = MultiHeadedAttention(embed_dim, heads, dropout, device)
self.pos_ff = PositionwiseFeedforward(embed_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src_tokens, src_mask):
x = self.layer_norm(src_tokens + self.dropout(self.self_attn(src_tokens, src_tokens, src_tokens, src_mask))) # ANCHOR: Encoder takes whole encoder_output (not only h_ctx)
x = self.layer_norm(x + self.dropout(self.pos_ff(x)))
return x
class Decoder(nn.Module):
def __init__(self, vocabulary, device, embed_dim=args.emb_dim, layers=args.layers,
heads=args.heads, pf_dim=args.pf_dim, dropout=args.dropout, max_positions=args.max_positions):
super().__init__()
output_dim = len(vocabulary)
self.pad_id = vocabulary.stoi[PAD_TOKEN]
self.pf_dim = pf_dim
self.dropout = dropout
self.device = device
self.max_positions = max_positions
self.scale = math.sqrt(embed_dim)
self.embed_tokens = nn.Embedding(output_dim, embed_dim)
self.embed_positions = PositionalEmbedding(embed_dim, dropout, max_positions)
self.layers = nn.ModuleList([DecoderLayer(embed_dim, heads, pf_dim, dropout, device) for _ in range(layers)])
self.linear_out = nn.Linear(embed_dim, output_dim)
def make_masks(self, src_tokens, trg_tokens):
src_mask = (src_tokens != self.pad_id).unsqueeze(1).unsqueeze(2)
trg_pad_mask = (trg_tokens != self.pad_id).unsqueeze(1).unsqueeze(3)
trg_len = trg_tokens.shape[1]
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=self.device)).bool()
trg_mask = trg_pad_mask & trg_sub_mask
return src_mask, trg_mask
def forward(self, src_tokens, trg_tokens, encoder_out):
src_mask, trg_mask = self.make_masks(src_tokens, trg_tokens)
x = self.embed_tokens(trg_tokens) * self.scale
x += self.embed_positions(trg_tokens)
h = F.dropout(x, p=self.dropout, training=self.training)
for layer in self.layers:
h = layer(h, encoder_out, trg_mask, src_mask)
x = h.contiguous().view(-1, h.shape[-1])
x = self.linear_out(x)
# TODO: add Softmax?
return x, h
class DecoderLayer(nn.Module):
def __init__(self, embed_dim, heads, pf_dim, dropout, device):
super().__init__()
self.layer_norm = nn.LayerNorm(embed_dim)
self.self_attn = MultiHeadedAttention(embed_dim, heads, dropout, device)
self.src_attn = MultiHeadedAttention(embed_dim, heads, dropout, device)
self.pos_ff = PositionwiseFeedforward(embed_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, embed_trg, embed_src, trg_mask, src_mask):
x = self.layer_norm(embed_trg + self.dropout(self.self_attn(embed_trg, embed_trg, embed_trg, trg_mask)))
x = self.layer_norm(x + self.dropout(self.src_attn(x, embed_src, embed_src, src_mask)))
x = self.layer_norm(x + self.dropout(self.pos_ff(x)))
return x
class MultiHeadedAttention(nn.Module):
def __init__(self, embed_dim, heads, dropout, device):
super().__init__()
# print(embed_dim)
# print(heads)
assert embed_dim % heads == 0
self.attn_dim = embed_dim // heads
self.heads = heads
self.dropout = dropout
self.linear_q = nn.Linear(embed_dim, embed_dim)
self.linear_k = nn.Linear(embed_dim, embed_dim)
self.linear_v = nn.Linear(embed_dim, embed_dim)
self.scale = torch.sqrt(torch.FloatTensor([self.attn_dim])).to(device)
self.linear_out = nn.Linear(embed_dim, embed_dim)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
Q = self.linear_q(query)
K = self.linear_k(key)
V = self.linear_v(value)
Q = Q.view(batch_size, -1, self.heads, self.attn_dim).permute(0, 2, 1, 3) # (batch, heads, sent_len, attn_dim)
K = K.view(batch_size, -1, self.heads, self.attn_dim).permute(0, 2, 1, 3) # (batch, heads, sent_len, attn_dim)
V = V.view(batch_size, -1, self.heads, self.attn_dim).permute(0, 2, 1, 3) # (batch, heads, sent_len, attn_dim)
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale # (batch, heads, sent_len, sent_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10) # TODO RuntimeError: The size of tensor a (10) must match the size of tensor b (20) at non-singleton dimension 3
attention = F.softmax(energy, dim=-1) # (batch, heads, sent_len, sent_len)
attention = F.dropout(attention, p=self.dropout, training=self.training)
x = torch.matmul(attention, V) # (batch, heads, sent_len, attn_dim)
x = x.permute(0, 2, 1, 3).contiguous() # (batch, sent_len, heads, attn_dim)
x = x.view(batch_size, -1, self.heads * (self.attn_dim)) # (batch, sent_len, embed_dim)
x = self.linear_out(x)
return x
class PositionwiseFeedforward(nn.Module):
def __init__(self, embed_dim, pf_dim, dropout):
super().__init__()
self.linear_1 = nn.Linear(embed_dim, pf_dim)
self.linear_2 = nn.Linear(pf_dim, embed_dim)
self.dropout = dropout
def forward(self, x):
x = torch.relu(self.linear_1(x))
x = F.dropout(x, p=self.dropout, training=self.training)
return self.linear_2(x)
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
pos_embed = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pos_embed[:, 0::2] = torch.sin(position * div_term)
pos_embed[:, 1::2] = torch.cos(position * div_term)
pos_embed = pos_embed.unsqueeze(0)
self.register_buffer('pos_embed', pos_embed)
def forward(self, x):
return Variable(self.pos_embed[:, :x.size(1)], requires_grad=False)