-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmyImage.py
626 lines (546 loc) · 25.1 KB
/
myImage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
'''Fairly basic set of tools for real-time data augmentation on image data.
Can easily be extended to include new transformations,
new preprocessing methods, etc...
'''
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
import re
from scipy import linalg
import scipy.ndimage as ndi
from six.moves import range
import os
import threading
from keras import backend as K
def random_rotation(x, rg, row_index=1, col_index=2, channel_index=0,
fill_mode='nearest', cval=0.):
theta = np.pi / 180 * np.random.uniform(-rg, rg)
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
return x
def random_shift(x, wrg, hrg, row_index=1, col_index=2, channel_index=0,
fill_mode='nearest', cval=0.):
h, w = x.shape[row_index], x.shape[col_index]
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
return x
def random_shear(x, intensity, row_index=1, col_index=2, channel_index=0,
fill_mode='nearest', cval=0.):
shear = np.random.uniform(-intensity, intensity)
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
return x
def random_zoom(x, zoom_range, row_index=1, col_index=2, channel_index=0,
fill_mode='nearest', cval=0.):
if len(zoom_range) != 2:
raise Exception('zoom_range should be a tuple or list of two floats. '
'Received arg: ', zoom_range)
if zoom_range[0] == 1 and zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
return x
def random_barrel_transform(x, intensity):
# TODO
pass
def random_channel_shift(x, intensity, channel_index=0):
x = np.rollaxis(x, channel_index, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x)
for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index+1)
return x
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.):
x = np.rollaxis(x, channel_index, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix,
final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index+1)
return x
def flip_axis(x, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
def array_to_img(x, dim_ordering='default', scale=True):
from PIL import Image
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
if dim_ordering == 'th':
x = x.transpose(1, 2, 0)
if scale:
x += max(-np.min(x), 0)
x_max = np.max(x)
if x_max != 0:
x /= x_max
x *= 255
if x.shape[2] == 3:
# RGB
return Image.fromarray(x.astype('uint8'), 'RGB')
elif x.shape[2] == 1:
# grayscale
return Image.fromarray(x[:, :, 0].astype('uint8'), 'L')
else:
raise Exception('Unsupported channel number: ', x.shape[2])
def img_to_array(img, dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
if dim_ordering not in ['th', 'tf']:
raise Exception('Unknown dim_ordering: ', dim_ordering)
# image has dim_ordering (height, width, channel)
x = np.asarray(img, dtype='float32')
if len(x.shape) == 3:
if dim_ordering == 'th':
x = x.transpose(2, 0, 1)
elif len(x.shape) == 2:
if dim_ordering == 'th':
x = x.reshape((1, x.shape[0], x.shape[1]))
else:
x = x.reshape((x.shape[0], x.shape[1], 1))
else:
raise Exception('Unsupported image shape: ', x.shape)
return x
def load_img(path, grayscale=False, target_size=None):
'''Load an image into PIL format.
# Arguments
path: path to image file
grayscale: boolean
target_size: None (default to original size)
or (img_height, img_width)
'''
from PIL import Image
img = Image.open(path)
if grayscale:
img = img.convert('L')
else: # Ensure 3 channel even when loaded image is grayscale
img = img.convert('RGB')
if target_size:
img = img.resize((target_size[1], target_size[0]))
return img
def list_pictures(directory, ext='jpg|jpeg|bmp|png'):
return [os.path.join(directory, f) for f in os.listdir(directory)
if os.path.isfile(os.path.join(directory, f)) and re.match('([\w]+\.(?:' + ext + '))', f)]
class myImageDataGenerator(object):
'''Generate minibatches with
real-time data augmentation.
# Arguments
featurewise_center: set input mean to 0 over the dataset.
samplewise_center: set each sample mean to 0.
featurewise_std_normalization: divide inputs by std of the dataset.
samplewise_std_normalization: divide each input by its std.
zca_whitening: apply ZCA whitening.
rotation_range: degrees (0 to 180).
width_shift_range: fraction of total width.
height_shift_range: fraction of total height.
shear_range: shear intensity (shear angle in radians).
zoom_range: amount of zoom. if scalar z, zoom will be randomly picked
in the range [1-z, 1+z]. A sequence of two can be passed instead
to select this range.
channel_shift_range: shift range for each channels.
fill_mode: points outside the boundaries are filled according to the
given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default
is 'nearest'.
cval: value used for points outside the boundaries when fill_mode is
'constant'. Default is 0.
horizontal_flip: whether to randomly flip images horizontally.
vertical_flip: whether to randomly flip images vertically.
rescale: rescaling factor. If None or 0, no rescaling is applied,
otherwise we multiply the data by the value provided (before applying
any other transformation).
dim_ordering: 'th' or 'tf'. In 'th' mode, the channels dimension
(the depth) is at index 1, in 'tf' mode it is at index 3.
It defaults to the `image_dim_ordering` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "th".
'''
def __init__(self,
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
self.__dict__.update(locals())
self.mean = None
self.std = None
self.principal_components = None
self.rescale = rescale
if dim_ordering not in {'tf', 'th'}:
raise Exception('dim_ordering should be "tf" (channel after row and '
'column) or "th" (channel before row and column). '
'Received arg: ', dim_ordering)
self.dim_ordering = dim_ordering
if dim_ordering == 'th':
self.channel_index = 1
self.row_index = 2
self.col_index = 3
if dim_ordering == 'tf':
self.channel_index = 3
self.row_index = 1
self.col_index = 2
if np.isscalar(zoom_range):
self.zoom_range = [1 - zoom_range, 1 + zoom_range]
elif len(zoom_range) == 2:
self.zoom_range = [zoom_range[0], zoom_range[1]]
else:
raise Exception('zoom_range should be a float or '
'a tuple or list of two floats. '
'Received arg: ', zoom_range)
def flow(self, X, y=None, batch_size=32, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg'):
return NumpyArrayIterator(
X, y, self,
batch_size=batch_size, shuffle=shuffle, seed=seed,
dim_ordering=self.dim_ordering,
save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format)
def flow_from_directory(self, directory,
target_size=(256, 256), color_mode='rgb',
classes=None, class_mode='categorical',
batch_size=32, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg'):
return DirectoryIterator(
directory, self,
target_size=target_size, color_mode=color_mode,
classes=classes, class_mode=class_mode,
dim_ordering=self.dim_ordering,
batch_size=batch_size, shuffle=shuffle, seed=seed,
save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format)
def standardize(self, x):
if self.rescale:
x *= self.rescale
# x is a single image, so it doesn't have image number at index 0
img_channel_index = self.channel_index - 1
if self.samplewise_center:
x -= np.mean(x, axis=img_channel_index, keepdims=True)
if self.samplewise_std_normalization:
x /= (np.std(x, axis=img_channel_index, keepdims=True) + 1e-7)
if self.featurewise_center:
x -= self.mean
if self.featurewise_std_normalization:
x /= (self.std + 1e-7)
if self.zca_whitening:
flatx = np.reshape(x, (x.size))
whitex = np.dot(flatx, self.principal_components)
x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2]))
return x
def random_transform(self, x):
# x is a single image, so it doesn't have image number at index 0
img_row_index = self.row_index - 1
img_col_index = self.col_index - 1
img_channel_index = self.channel_index - 1
# use composition of homographies to generate final transform that needs to be applied
if self.rotation_range:
theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range)
else:
theta = 0
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
if self.height_shift_range:
tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_index]
else:
tx = 0
if self.width_shift_range:
ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_index]
else:
ty = 0
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
if self.shear_range:
shear = np.random.uniform(-self.shear_range, self.shear_range)
else:
shear = 0
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix)
h, w = x.shape[img_row_index], x.shape[img_col_index]
transform_matrix = transform_matrix_offset_center(transform_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_index,
fill_mode=self.fill_mode, cval=self.cval)
if self.channel_shift_range != 0:
x = random_channel_shift(x, self.channel_shift_range, img_channel_index)
if self.horizontal_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_col_index)
if self.vertical_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_row_index)
# TODO:
# channel-wise normalization
# barrel/fisheye
return x
def fit(self, X,
augment=False,
rounds=1,
seed=None):
'''Required for featurewise_center, featurewise_std_normalization
and zca_whitening.
# Arguments
X: Numpy array, the data to fit on.
augment: whether to fit on randomly augmented samples
rounds: if `augment`,
how many augmentation passes to do over the data
seed: random seed.
'''
X = np.copy(X)
if augment:
aX = np.zeros(tuple([rounds * X.shape[0]] + list(X.shape)[1:]))
for r in range(rounds):
for i in range(X.shape[0]):
aX[i + r * X.shape[0]] = self.random_transform(X[i])
X = aX
if self.featurewise_center:
self.mean = np.mean(X, axis=0)
X -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(X, axis=0)
X /= (self.std + 1e-7)
if self.zca_whitening:
flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
sigma = np.dot(flatX.T, flatX) / flatX.shape[1]
U, S, V = linalg.svd(sigma)
self.principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T)
class Iterator(object):
def __init__(self, N, batch_size, shuffle, seed):
self.N = N
self.batch_size = batch_size
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_generator = self._flow_index(N, batch_size, shuffle, seed)
def reset(self):
self.batch_index = 0
def _flow_index(self, N, batch_size=32, shuffle=False, seed=None):
# ensure self.batch_index is 0
self.reset()
while 1:
if self.batch_index == 0:
index_array = np.arange(N)
if shuffle:
if seed is not None:
np.random.seed(seed + self.total_batches_seen)
index_array = np.random.permutation(N)
current_index = (self.batch_index * batch_size) % N
if N >= current_index + batch_size:
current_batch_size = batch_size
self.batch_index += 1
else:
current_batch_size = N - current_index
self.batch_index = 0
self.total_batches_seen += 1
yield (index_array[current_index: current_index + current_batch_size],
current_index, current_batch_size)
def __iter__(self):
# needed if we want to do something like:
# for x, y in data_gen.flow(...):
return self
def __next__(self, *args, **kwargs):
return self.next(*args, **kwargs)
class NumpyArrayIterator(Iterator):
def __init__(self, X, y, image_data_generator,
batch_size=32, shuffle=False, seed=None,
dim_ordering='default',
save_to_dir=None, save_prefix='', save_format='jpeg'):
if y is not None and len(X) != len(y):
raise Exception('X (images tensor) and y (labels) '
'should have the same length. '
'Found: X.shape = %s, y.shape = %s' % (np.asarray(X).shape, np.asarray(y).shape))
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
self.X = X
self.y = y
self.image_data_generator = image_data_generator
self.dim_ordering = dim_ordering
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
super(NumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed)
def next(self):
# for python 2.x.
# Keeps under lock only the mechanism which advances
# the indexing of each batch
# see http://anandology.com/blog/using-iterators-and-generators/
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
# The transformation of images is not under thread lock so it can be done in parallel
batch_x = np.zeros(tuple([current_batch_size] + list(self.X.shape)[1:]))
batch_xt = np.zeros(tuple([current_batch_size] + list(self.X.shape)[1:]))
for i, j in enumerate(index_array):
x = self.X[j]
x = self.image_data_generator.random_transform(x.astype('float32'))
x = self.image_data_generator.standardize(x)
batch_x[i] = x
batch_xt[i] = self.X[j]
if self.save_to_dir:
for i in range(current_batch_size):
img = array_to_img(batch_x[i], self.dim_ordering, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
if self.y is None:
return [batch_x,batch_x]
batch_y = self.y[index_array,:][:,index_array]
return [batch_x,batch_x],batch_y
class DirectoryIterator(Iterator):
def __init__(self, directory, image_data_generator,
target_size=(256, 256), color_mode='rgb',
dim_ordering='default',
classes=None, class_mode='categorical',
batch_size=32, shuffle=True, seed=None,
save_to_dir=None, save_prefix='', save_format='jpeg'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
self.directory = directory
self.image_data_generator = image_data_generator
self.target_size = tuple(target_size)
if color_mode not in {'rgb', 'grayscale'}:
raise ValueError('Invalid color mode:', color_mode,
'; expected "rgb" or "grayscale".')
self.color_mode = color_mode
self.dim_ordering = dim_ordering
if self.color_mode == 'rgb':
if self.dim_ordering == 'tf':
self.image_shape = self.target_size + (3,)
else:
self.image_shape = (3,) + self.target_size
else:
if self.dim_ordering == 'tf':
self.image_shape = self.target_size + (1,)
else:
self.image_shape = (1,) + self.target_size
self.classes = classes
if class_mode not in {'categorical', 'binary', 'sparse', None}:
raise ValueError('Invalid class_mode:', class_mode,
'; expected one of "categorical", '
'"binary", "sparse", or None.')
self.class_mode = class_mode
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}
# first, count the number of samples and classes
self.nb_sample = 0
if not classes:
classes = []
for subdir in sorted(os.listdir(directory)):
if os.path.isdir(os.path.join(directory, subdir)):
classes.append(subdir)
self.nb_class = len(classes)
self.class_indices = dict(zip(classes, range(len(classes))))
for subdir in classes:
subpath = os.path.join(directory, subdir)
for fname in os.listdir(subpath):
is_valid = False
for extension in white_list_formats:
if fname.lower().endswith('.' + extension):
is_valid = True
break
if is_valid:
self.nb_sample += 1
print('Found %d images belonging to %d classes.' % (self.nb_sample, self.nb_class))
# second, build an index of the images in the different class subfolders
self.filenames = []
self.classes = np.zeros((self.nb_sample,), dtype='int32')
i = 0
for subdir in classes:
subpath = os.path.join(directory, subdir)
for fname in os.listdir(subpath):
is_valid = False
for extension in white_list_formats:
if fname.lower().endswith('.' + extension):
is_valid = True
break
if is_valid:
self.classes[i] = self.class_indices[subdir]
self.filenames.append(os.path.join(subdir, fname))
i += 1
super(DirectoryIterator, self).__init__(self.nb_sample, batch_size, shuffle, seed)
def next(self):
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
# The transformation of images is not under thread lock so it can be done in parallel
batch_x = np.zeros((current_batch_size,) + self.image_shape)
grayscale = self.color_mode == 'grayscale'
# build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(os.path.join(self.directory, fname), grayscale=grayscale, target_size=self.target_size)
x = img_to_array(img, dim_ordering=self.dim_ordering)
x = self.image_data_generator.random_transform(x)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i in range(current_batch_size):
img = array_to_img(batch_x[i], self.dim_ordering, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# build batch of labels
if self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype('float32')
elif self.class_mode == 'categorical':
batch_y = np.zeros((len(batch_x), self.nb_class), dtype='float32')
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x,batch_y