forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch2onnx.py
405 lines (360 loc) · 13.8 KB
/
pytorch2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import warnings
from functools import partial
import mmcv
import numpy as np
import onnxruntime as rt
import torch
import torch._C
import torch.serialization
from mmcv import DictAction
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint
from torch import nn
from mmseg.apis import show_result_pyplot
from mmseg.apis.inference import LoadImage
from mmseg.datasets.pipelines import Compose
from mmseg.models import build_segmentor
from mmseg.ops import resize
torch.manual_seed(3)
def _convert_batchnorm(module):
module_output = module
if isinstance(module, torch.nn.SyncBatchNorm):
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
module_output.weight.data = module.weight.data.clone().detach()
module_output.bias.data = module.bias.data.clone().detach()
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, _convert_batchnorm(child))
del module
return module_output
def _demo_mm_inputs(input_shape, num_classes):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_classes (int):
number of semantic classes
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
segs = rng.randint(
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_semantic_seg': torch.LongTensor(segs)
}
return mm_inputs
def _prepare_input_img(img_path,
test_pipeline,
shape=None,
rescale_shape=None):
# build the data pipeline
if shape is not None:
test_pipeline[1]['img_scale'] = (shape[1], shape[0])
test_pipeline[1]['transforms'][0]['keep_ratio'] = False
test_pipeline = [LoadImage()] + test_pipeline[1:]
test_pipeline = Compose(test_pipeline)
# prepare data
data = dict(img=img_path)
data = test_pipeline(data)
imgs = data['img']
img_metas = [i.data for i in data['img_metas']]
if rescale_shape is not None:
for img_meta in img_metas:
img_meta['ori_shape'] = tuple(rescale_shape) + (3, )
mm_inputs = {'imgs': imgs, 'img_metas': img_metas}
return mm_inputs
def _update_input_img(img_list, img_meta_list, update_ori_shape=False):
# update img and its meta list
N, C, H, W = img_list[0].shape
img_meta = img_meta_list[0][0]
img_shape = (H, W, C)
if update_ori_shape:
ori_shape = img_shape
else:
ori_shape = img_meta['ori_shape']
pad_shape = img_shape
new_img_meta_list = [[{
'img_shape':
img_shape,
'ori_shape':
ori_shape,
'pad_shape':
pad_shape,
'filename':
img_meta['filename'],
'scale_factor':
(img_shape[1] / ori_shape[1], img_shape[0] / ori_shape[0]) * 2,
'flip':
False,
} for _ in range(N)]]
return img_list, new_img_meta_list
def pytorch2onnx(model,
mm_inputs,
opset_version=11,
show=False,
output_file='tmp.onnx',
verify=False,
dynamic_export=False):
"""Export Pytorch model to ONNX model and verify the outputs are same
between Pytorch and ONNX.
Args:
model (nn.Module): Pytorch model we want to export.
mm_inputs (dict): Contain the input tensors and img_metas information.
opset_version (int): The onnx op version. Default: 11.
show (bool): Whether print the computation graph. Default: False.
output_file (string): The path to where we store the output ONNX model.
Default: `tmp.onnx`.
verify (bool): Whether compare the outputs between Pytorch and ONNX.
Default: False.
dynamic_export (bool): Whether to export ONNX with dynamic axis.
Default: False.
"""
model.cpu().eval()
test_mode = model.test_cfg.mode
if isinstance(model.decode_head, nn.ModuleList):
num_classes = model.decode_head[-1].num_classes
else:
num_classes = model.decode_head.num_classes
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
img_list = [img[None, :] for img in imgs]
img_meta_list = [[img_meta] for img_meta in img_metas]
# update img_meta
img_list, img_meta_list = _update_input_img(img_list, img_meta_list)
# replace original forward function
origin_forward = model.forward
model.forward = partial(
model.forward,
img_metas=img_meta_list,
return_loss=False,
rescale=True)
dynamic_axes = None
if dynamic_export:
if test_mode == 'slide':
dynamic_axes = {'input': {0: 'batch'}, 'output': {1: 'batch'}}
else:
dynamic_axes = {
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'output': {
1: 'batch',
2: 'height',
3: 'width'
}
}
register_extra_symbolics(opset_version)
with torch.no_grad():
torch.onnx.export(
model, (img_list, ),
output_file,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=show,
opset_version=opset_version,
dynamic_axes=dynamic_axes)
print(f'Successfully exported ONNX model: {output_file}')
model.forward = origin_forward
if verify:
# check by onnx
import onnx
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)
if dynamic_export and test_mode == 'whole':
# scale image for dynamic shape test
img_list = [resize(_, scale_factor=1.5) for _ in img_list]
# concate flip image for batch test
flip_img_list = [_.flip(-1) for _ in img_list]
img_list = [
torch.cat((ori_img, flip_img), 0)
for ori_img, flip_img in zip(img_list, flip_img_list)
]
# update img_meta
img_list, img_meta_list = _update_input_img(
img_list, img_meta_list, test_mode == 'whole')
# check the numerical value
# get pytorch output
with torch.no_grad():
pytorch_result = model(img_list, img_meta_list, return_loss=False)
pytorch_result = np.stack(pytorch_result, 0)
# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
sess = rt.InferenceSession(output_file)
onnx_result = sess.run(
None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0]
# show segmentation results
if show:
import os.path as osp
import cv2
img = img_meta_list[0][0]['filename']
if not osp.exists(img):
img = imgs[0][:3, ...].permute(1, 2, 0) * 255
img = img.detach().numpy().astype(np.uint8)
ori_shape = img.shape[:2]
else:
ori_shape = LoadImage()({'img': img})['ori_shape']
# resize onnx_result to ori_shape
onnx_result_ = cv2.resize(onnx_result[0].astype(np.uint8),
(ori_shape[1], ori_shape[0]))
show_result_pyplot(
model,
img, (onnx_result_, ),
palette=model.PALETTE,
block=False,
title='ONNXRuntime',
opacity=0.5)
# resize pytorch_result to ori_shape
pytorch_result_ = cv2.resize(pytorch_result[0].astype(np.uint8),
(ori_shape[1], ori_shape[0]))
show_result_pyplot(
model,
img, (pytorch_result_, ),
title='PyTorch',
palette=model.PALETTE,
opacity=0.5)
# compare results
np.testing.assert_allclose(
pytorch_result.astype(np.float32) / num_classes,
onnx_result.astype(np.float32) / num_classes,
rtol=1e-5,
atol=1e-5,
err_msg='The outputs are different between Pytorch and ONNX')
print('The outputs are same between Pytorch and ONNX')
def parse_args():
parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
parser.add_argument(
'--input-img', type=str, help='Images for input', default=None)
parser.add_argument(
'--show',
action='store_true',
help='show onnx graph and segmentation results')
parser.add_argument(
'--verify', action='store_true', help='verify the onnx model')
parser.add_argument('--output-file', type=str, default='tmp.onnx')
parser.add_argument('--opset-version', type=int, default=11)
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=None,
help='input image height and width.')
parser.add_argument(
'--rescale_shape',
type=int,
nargs='+',
default=None,
help='output image rescale height and width, work for slide mode.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--dynamic-export',
action='store_true',
help='Whether to export onnx with dynamic axis.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
cfg.model.pretrained = None
if args.shape is None:
img_scale = cfg.test_pipeline[1]['img_scale']
input_shape = (1, 3, img_scale[1], img_scale[0])
elif len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (
1,
3,
) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
test_mode = cfg.model.test_cfg.mode
# build the model and load checkpoint
cfg.model.train_cfg = None
segmentor = build_segmentor(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
# convert SyncBN to BN
segmentor = _convert_batchnorm(segmentor)
if args.checkpoint:
checkpoint = load_checkpoint(
segmentor, args.checkpoint, map_location='cpu')
segmentor.CLASSES = checkpoint['meta']['CLASSES']
segmentor.PALETTE = checkpoint['meta']['PALETTE']
# read input or create dummpy input
if args.input_img is not None:
preprocess_shape = (input_shape[2], input_shape[3])
rescale_shape = None
if args.rescale_shape is not None:
rescale_shape = [args.rescale_shape[0], args.rescale_shape[1]]
mm_inputs = _prepare_input_img(
args.input_img,
cfg.data.test.pipeline,
shape=preprocess_shape,
rescale_shape=rescale_shape)
else:
if isinstance(segmentor.decode_head, nn.ModuleList):
num_classes = segmentor.decode_head[-1].num_classes
else:
num_classes = segmentor.decode_head.num_classes
mm_inputs = _demo_mm_inputs(input_shape, num_classes)
# convert model to onnx file
pytorch2onnx(
segmentor,
mm_inputs,
opset_version=args.opset_version,
show=args.show,
output_file=args.output_file,
verify=args.verify,
dynamic_export=args.dynamic_export)
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: This tool will be deprecated in future. '
msg += blue_text + 'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)