forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayernorm_kernels.cu
200 lines (175 loc) · 7.85 KB
/
layernorm_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "type_convert.cuh"
#include "dispatch_utils.h"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
#ifndef USE_ROCM
#include <cub/cub.cuh>
#else
#include <hipcub/hipcub.hpp>
#endif
namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template <typename scalar_t>
__global__ void rms_norm_kernel(
scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * hidden_size + idx];
variance += x * x;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
out[blockIdx.x * hidden_size + idx] =
((scalar_t)(x * s_variance)) * weight[idx];
}
}
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck. */
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16Vec<scalar_t, width>>);
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v =
reinterpret_cast<_f16Vec<scalar_t, width>*>(input);
auto* __restrict__ residual_v =
reinterpret_cast<_f16Vec<scalar_t, width>*>(residual);
auto* __restrict__ weight_v =
reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = residual_v[id];
temp *= s_variance;
temp *= weight_v[idx];
input_v[id] = temp;
}
}
/* Generic fused_add_rms_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
scalar_t z = input[blockIdx.x * hidden_size + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float)z;
variance += x * x;
residual[blockIdx.x * hidden_size + idx] = z;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)residual[blockIdx.x * hidden_size + idx];
input[blockIdx.x * hidden_size + idx] =
((scalar_t)(x * s_variance)) * weight[idx];
}
}
} // namespace vllm
void rms_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \
vllm::fused_add_rms_norm_kernel<scalar_t, width> \
<<<grid, block, 0, stream>>>(input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), epsilon, \
num_tokens, hidden_size); \
});
void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}