-
Notifications
You must be signed in to change notification settings - Fork 3
/
samplers.py
65 lines (56 loc) · 2.58 KB
/
samplers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import torch
import torch.distributed as dist
import math
class RASampler(torch.utils.data.Sampler):
"""Sampler that restricts data loading to a subset of the dataset for distributed,
with repeated augmentation.
It ensures that different each augmented version of a sample will be visible to a
different process (GPU)
Heavily based on torch.utils.data.DistributedSampler
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, num_repeats: int = 3):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if num_repeats < 1:
raise ValueError("num_repeats should be greater than 0")
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_repeats = num_repeats
self.epoch = 0
print("The len of the dataset is ", len(dataset))
self.num_samples = int(math.ceil(len(self.dataset) * self.num_repeats / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
# self.num_selected_samples = int(math.ceil(len(self.dataset) / self.num_replicas))
self.num_selected_samples = int(math.floor(len(self.dataset) // 256 * 256 / self.num_replicas))
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g)
else:
indices = torch.arange(start=0, end=len(self.dataset))
# add extra samples to make it evenly divisible
indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0).tolist()
padding_size: int = self.total_size - len(indices)
if padding_size > 0:
indices += indices[:padding_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices[:self.num_selected_samples])
def __len__(self):
return self.num_selected_samples
def set_epoch(self, epoch):
self.epoch = epoch