|
| 1 | +import torch |
| 2 | +import torch.optim as optim |
| 3 | +import numpy as np |
| 4 | +import random |
| 5 | +import hydra |
| 6 | +from hydra.core.config_store import ConfigStore |
| 7 | +from omegaconf import OmegaConf, DictConfig |
| 8 | +from trainer.trainer import train |
| 9 | +from model_builder import build_model |
| 10 | + |
| 11 | +from data.data_loader import ( |
| 12 | + SpectrogramDataset, |
| 13 | + BucketingSampler, |
| 14 | + AudioDataLoader, |
| 15 | +) |
| 16 | +from vocabulary import ( |
| 17 | + load_label, |
| 18 | + load_dataset, |
| 19 | +) |
| 20 | + |
| 21 | +from data import MelSpectrogramConfig |
| 22 | +from models.las import ( |
| 23 | + ListenAttendSpellConfig, |
| 24 | + JointCTCAttentionLASConfig, |
| 25 | +) |
| 26 | +from models.deepspeech2 import DeepSpeech2Config |
| 27 | +from trainer import ( |
| 28 | + ListenAttendSpellTrainConfig, |
| 29 | + DeepSpeech2TrainConfig, |
| 30 | +) |
| 31 | + |
| 32 | + |
| 33 | +cs = ConfigStore.instance() |
| 34 | +cs.store(group="audio", name="melspectrogram", node=MelSpectrogramConfig, package="audio") |
| 35 | +cs.store(group="model", name="las", node=ListenAttendSpellConfig, package="model") |
| 36 | +cs.store(group="model", name="joint_ctc_attention_las", node=JointCTCAttentionLASConfig, package="model") |
| 37 | +cs.store(group="model", name="deepspeech2", node=DeepSpeech2Config, package="model") |
| 38 | +cs.store(group="train", name="las_train", node=ListenAttendSpellTrainConfig, package="train") |
| 39 | +cs.store(group="train", name="deepspeech2_train", node=DeepSpeech2TrainConfig, package="train") |
| 40 | + |
| 41 | + |
| 42 | +@hydra.main(config_path='configs', config_name='train') |
| 43 | +def main(config: DictConfig) -> None: |
| 44 | + print(OmegaConf.to_yaml(config)) |
| 45 | + |
| 46 | + torch.manual_seed(config.train.seed) |
| 47 | + torch.cuda.manual_seed_all(config.train.seed) |
| 48 | + np.random.seed(config.train.seed) |
| 49 | + random.seed(config.train.seed) |
| 50 | + |
| 51 | + use_cuda = config.train.cuda and torch.cuda.is_available() |
| 52 | + device = torch.device('cuda' if use_cuda else 'cpu') |
| 53 | + |
| 54 | + char2id, id2char = load_label(config.train.label_path, config.train.blank_id) |
| 55 | + train_audio_paths, train_transcripts, valid_audio_paths, valid_transcripts = load_dataset(config.train.dataset_path, config.train.mode) |
| 56 | + |
| 57 | + train_dataset = SpectrogramDataset( |
| 58 | + config.train.audio_path, |
| 59 | + train_audio_paths, |
| 60 | + train_transcripts, |
| 61 | + config.audio.sampling_rate, |
| 62 | + config.audio.n_mel, |
| 63 | + config.audio.frame_length, |
| 64 | + config.audio.frame_stride, |
| 65 | + config.audio.extension, |
| 66 | + config.train.sos_id, |
| 67 | + config.train.eos_id, |
| 68 | + ) |
| 69 | + |
| 70 | + train_sampler = BucketingSampler(train_dataset, batch_size=config.train.batch_size) |
| 71 | + train_loader = AudioDataLoader( |
| 72 | + train_dataset, |
| 73 | + batch_sampler=train_sampler, |
| 74 | + num_workers=config.train.num_workers, |
| 75 | + ) |
| 76 | + |
| 77 | + valid_dataset = SpectrogramDataset( |
| 78 | + config.train.audio_path, |
| 79 | + valid_audio_paths, |
| 80 | + valid_transcripts, |
| 81 | + config.audio.sampling_rate, |
| 82 | + config.audio.n_mel, |
| 83 | + config.audio.frame_length, |
| 84 | + config.audio.frame_stride, |
| 85 | + config.audio.extension, |
| 86 | + config.train.sos_id, |
| 87 | + config.train.eos_id, |
| 88 | + ) |
| 89 | + valid_sampler = BucketingSampler(valid_dataset, batch_size=config.train.batch_size) |
| 90 | + valid_loader = AudioDataLoader( |
| 91 | + valid_dataset, |
| 92 | + batch_sampler=valid_sampler, |
| 93 | + num_workers=config.train.num_workers, |
| 94 | + ) |
| 95 | + |
| 96 | + model = build_model(config, device) |
| 97 | + model = model.to(device) |
| 98 | + |
| 99 | + optimizer = optim.Adam(model.parameters(), lr=config.train.lr) |
| 100 | + |
| 101 | + print('Start Train !!!') |
| 102 | + for epoch in range(0, config.train.epochs): |
| 103 | + train(config, model, device, train_loader, valid_loader, train_sampler, optimizer, epoch, id2char) |
| 104 | + |
| 105 | + torch.save(model.state_dict(), config.train.model_save_path) |
| 106 | + |
| 107 | + |
| 108 | +if __name__ == "__main__": |
| 109 | + main() |
0 commit comments