Skip to content

Latest commit

 

History

History

docker

Crawl4AI Docker Guide 🐳

Table of Contents

Prerequisites

Before we dive in, make sure you have:

  • Docker installed and running (version 20.10.0 or higher)
  • At least 4GB of RAM available for the container
  • Python 3.10+ (if using the Python SDK)
  • Node.js 16+ (if using the Node.js examples)

💡 Pro tip: Run docker info to check your Docker installation and available resources.

Installation

Local Build

Let's get your local environment set up step by step!

1. Building the Image

First, clone the repository and build the Docker image:

# Clone the repository
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai/deploy

# Build the Docker image
docker build --platform=linux/amd64 --no-cache -t crawl4ai .

# Or build for arm64
docker build --platform=linux/arm64 --no-cache -t crawl4ai .

2. Environment Setup

If you plan to use LLMs (Language Models), you'll need to set up your API keys. Create a .llm.env file:

# OpenAI
OPENAI_API_KEY=sk-your-key

# Anthropic
ANTHROPIC_API_KEY=your-anthropic-key

# DeepSeek
DEEPSEEK_API_KEY=your-deepseek-key

# Check out https://docs.litellm.ai/docs/providers for more providers!

🔑 Note: Keep your API keys secure! Never commit them to version control.

3. Running the Container

You have several options for running the container:

Basic run (no LLM support):

docker run -d -p 8000:8000 --name crawl4ai crawl4ai

With LLM support:

docker run -d -p 8000:8000 \
  --env-file .llm.env \
  --name crawl4ai \
  crawl4ai

Using host environment variables (Not a good practice, but works for local testing):

docker run -d -p 8000:8000 \
  --env-file .llm.env \
  --env "$(env)" \
  --name crawl4ai \
  crawl4ai

Multi-Platform Build

For distributing your image across different architectures, use buildx:

# Set up buildx builder
docker buildx create --use

# Build for multiple platforms
docker buildx build \
  --platform linux/amd64,linux/arm64 \
  -t crawl4ai \
  --push \
  .

💡 Note: Multi-platform builds require Docker Buildx and need to be pushed to a registry.

Development Build

For development, you might want to enable all features:

docker build -t crawl4ai
  --build-arg INSTALL_TYPE=all \
  --build-arg PYTHON_VERSION=3.10 \
  --build-arg ENABLE_GPU=true \
  .

GPU-Enabled Build

If you plan to use GPU acceleration:

docker build -t crawl4ai
  --build-arg ENABLE_GPU=true \
  deploy/docker/

Build Arguments Explained

Argument Description Default Options
PYTHON_VERSION Python version 3.10 3.8, 3.9, 3.10
INSTALL_TYPE Feature set default default, all, torch, transformer
ENABLE_GPU GPU support false true, false
APP_HOME Install path /app any valid path

Build Best Practices

  1. Choose the Right Install Type

    • default: Basic installation, smallest image, to be honest, I use this most of the time.
    • all: Full features, larger image (include transformer, and nltk, make sure you really need them)
  2. Platform Considerations

    • Let Docker auto-detect platform unless you need cross-compilation
    • Use --platform for specific architecture requirements
    • Consider buildx for multi-architecture distribution
  3. Performance Optimization

    • The image automatically includes platform-specific optimizations
    • AMD64 gets OpenMP optimizations
    • ARM64 gets OpenBLAS optimizations

Docker Hub

🚧 Coming soon! The image will be available at crawl4ai. Stay tuned!

Using the API

In the following sections, we discuss two ways to communicate with the Docker server. One option is to use the client SDK that I developed for Python, and I will soon develop one for Node.js. I highly recommend this approach to avoid mistakes. Alternatively, you can take a more technical route by using the JSON structure and passing it to all the URLs, which I will explain in detail.

Python SDK

The SDK makes things easier! Here's how to use it:

from crawl4ai.docker_client import Crawl4aiDockerClient
from crawl4ai import BrowserConfig, CrawlerRunConfig

async def main():
    async with Crawl4aiDockerClient(base_url="http://localhost:8000", verbose=True) as client:
      # If JWT is enabled, you can authenticate like this: (more on this later)
        # await client.authenticate("test@example.com")
        
        # Non-streaming crawl
        results = await client.crawl(
            ["https://example.com", "https://python.org"],
            browser_config=BrowserConfig(headless=True),
            crawler_config=CrawlerRunConfig()
        )
        print(f"Non-streaming results: {results}")
        
        # Streaming crawl
        crawler_config = CrawlerRunConfig(stream=True)
        async for result in await client.crawl(
            ["https://example.com", "https://python.org"],
            browser_config=BrowserConfig(headless=True),
            crawler_config=crawler_config
        ):
            print(f"Streamed result: {result}")
        
        # Get schema
        schema = await client.get_schema()
        print(f"Schema: {schema}")

if __name__ == "__main__":
    asyncio.run(main())

Crawl4aiDockerClient is an async context manager that handles the connection for you. You can pass in optional parameters for more control:

  • base_url (str): Base URL of the Crawl4AI Docker server
  • timeout (float): Default timeout for requests in seconds
  • verify_ssl (bool): Whether to verify SSL certificates
  • verbose (bool): Whether to show logging output
  • log_file (str, optional): Path to log file if file logging is desired

This client SDK generates a properly structured JSON request for the server's HTTP API.

Second Approach: Direct API Calls

This is super important! The API expects a specific structure that matches our Python classes. Let me show you how it works.

Understanding Configuration Structure

Let's dive deep into how configurations work in Crawl4AI. Every configuration object follows a consistent pattern of type and params. This structure enables complex, nested configurations while maintaining clarity.

The Basic Pattern

Try this in Python to understand the structure:

from crawl4ai import BrowserConfig

# Create a config and see its structure
config = BrowserConfig(headless=True)
print(config.dump())

This outputs:

{
    "type": "BrowserConfig",
    "params": {
        "headless": true
    }
}

Simple vs Complex Values

The structure follows these rules:

  • Simple values (strings, numbers, booleans, lists) are passed directly
  • Complex values (classes, dictionaries) use the type-params pattern

For example, with dictionaries:

{
    "browser_config": {
        "type": "BrowserConfig",
        "params": {
            "headless": true,           // Simple boolean - direct value
            "viewport": {               // Complex dictionary - needs type-params
                "type": "dict",
                "value": {
                    "width": 1200,
                    "height": 800
                }
            }
        }
    }
}

Strategy Pattern and Nesting

Strategies (like chunking or content filtering) demonstrate why we need this structure. Consider this chunking configuration:

{
    "crawler_config": {
        "type": "CrawlerRunConfig",
        "params": {
            "chunking_strategy": {
                "type": "RegexChunking",      // Strategy implementation
                "params": {
                    "patterns": ["\n\n", "\\.\\s+"]
                }
            }
        }
    }
}

Here, chunking_strategy accepts any chunking implementation. The type field tells the system which strategy to use, and params configures that specific strategy.

Complex Nested Example

Let's look at a more complex example with content filtering:

{
    "crawler_config": {
        "type": "CrawlerRunConfig",
        "params": {
            "markdown_generator": {
                "type": "DefaultMarkdownGenerator",
                "params": {
                    "content_filter": {
                        "type": "PruningContentFilter",
                        "params": {
                            "threshold": 0.48,
                            "threshold_type": "fixed"
                        }
                    }
                }
            }
        }
    }
}

This shows how deeply configurations can nest while maintaining a consistent structure.

Quick Grammar Overview

config := {
    "type": string,
    "params": {
        key: simple_value | complex_value
    }
}

simple_value := string | number | boolean | [simple_value]
complex_value := config | dict_value

dict_value := {
    "type": "dict",
    "value": object
}

Important Rules 🚨

  • Always use the type-params pattern for class instances
  • Use direct values for primitives (numbers, strings, booleans)
  • Wrap dictionaries with {"type": "dict", "value": {...}}
  • Arrays/lists are passed directly without type-params
  • All parameters are optional unless specifically required

Pro Tip 💡

The easiest way to get the correct structure is to:

  1. Create configuration objects in Python
  2. Use the dump() method to see their JSON representation
  3. Use that JSON in your API calls

Example:

from crawl4ai import CrawlerRunConfig, PruningContentFilter

config = CrawlerRunConfig(
    markdown_generator=DefaultMarkdownGenerator(
        content_filter=PruningContentFilter(threshold=0.48, threshold_type="fixed")
    ),
    cache_mode= CacheMode.BYPASS
)
print(config.dump())  # Use this JSON in your API calls

More Examples

Advanced Crawler Configuration

{
    "urls": ["https://example.com"],
    "crawler_config": {
        "type": "CrawlerRunConfig",
        "params": {
            "cache_mode": "bypass",
            "markdown_generator": {
                "type": "DefaultMarkdownGenerator",
                "params": {
                    "content_filter": {
                        "type": "PruningContentFilter",
                        "params": {
                            "threshold": 0.48,
                            "threshold_type": "fixed",
                            "min_word_threshold": 0
                        }
                    }
                }
            }
        }
    }
}

Extraction Strategy:

{
    "crawler_config": {
        "type": "CrawlerRunConfig",
        "params": {
            "extraction_strategy": {
                "type": "JsonCssExtractionStrategy",
                "params": {
                    "schema": {
                        "baseSelector": "article.post",
                        "fields": [
                            {"name": "title", "selector": "h1", "type": "text"},
                            {"name": "content", "selector": ".content", "type": "html"}
                        ]
                    }
                }
            }
        }
    }
}

LLM Extraction Strategy

{
  "crawler_config": {
    "type": "CrawlerRunConfig",
    "params": {
      "extraction_strategy": {
        "type": "LLMExtractionStrategy",
        "params": {
          "instruction": "Extract article title, author, publication date and main content",
          "provider": "openai/gpt-4",
          "api_token": "your-api-token",
          "schema": {
            "type": "dict",
            "value": {
              "title": "Article Schema",
              "type": "object",
              "properties": {
                "title": {
                  "type": "string",
                  "description": "The article's headline"
                },
                "author": {
                  "type": "string",
                  "description": "The author's name"
                },
                "published_date": {
                  "type": "string",
                  "format": "date-time",
                  "description": "Publication date and time"
                },
                "content": {
                  "type": "string",
                  "description": "The main article content"
                }
              },
              "required": ["title", "content"]
            }
          }
        }
      }
    }
  }
}

Deep Crawler Example

{
  "crawler_config": {
    "type": "CrawlerRunConfig",
    "params": {
      "deep_crawl_strategy": {
        "type": "BFSDeepCrawlStrategy",
        "params": {
          "max_depth": 3,
          "filter_chain": {
            "type": "FilterChain",
            "params": {
              "filters": [
                {
                  "type": "ContentTypeFilter",
                  "params": {
                    "allowed_types": ["text/html", "application/xhtml+xml"]
                  }
                },
                {
                  "type": "DomainFilter",
                  "params": {
                    "allowed_domains": ["blog.*", "docs.*"],
                  }
                }
              ]
            }
          },
          "url_scorer": {
            "type": "CompositeScorer",
            "params": {
              "scorers": [
                {
                  "type": "KeywordRelevanceScorer",
                  "params": {
                    "keywords": ["tutorial", "guide", "documentation"],
                  }
                },
                {
                  "type": "PathDepthScorer",
                  "params": {
                    "weight": 0.5,
                    "optimal_depth": 3  
                  }
                }
              ]
            }
          }
        }
      }
    }
  }
}

REST API Examples

Let's look at some practical examples:

Simple Crawl

import requests

crawl_payload = {
    "urls": ["https://example.com"],
    "browser_config": {"headless": True},
    "crawler_config": {"stream": False}
}
response = requests.post(
    "http://localhost:8000/crawl",
    # headers={"Authorization": f"Bearer {token}"},  # If JWT is enabled, more on this later
    json=crawl_payload
)
print(response.json())  # Print the response for debugging

Streaming Results

async def test_stream_crawl(session, token: str):
    """Test the /crawl/stream endpoint with multiple URLs."""
    url = "http://localhost:8000/crawl/stream"
    payload = {
        "urls": [
            "https://example.com",
            "https://example.com/page1",  
            "https://example.com/page2",  
            "https://example.com/page3",  
        ],
        "browser_config": {"headless": True, "viewport": {"width": 1200}},
        "crawler_config": {"stream": True, "cache_mode": "bypass"}
    }

    # headers = {"Authorization": f"Bearer {token}"} # If JWT is enabled, more on this later
    
    try:
        async with session.post(url, json=payload, headers=headers) as response:
            status = response.status
            print(f"Status: {status} (Expected: 200)")
            assert status == 200, f"Expected 200, got {status}"
            
            # Read streaming response line-by-line (NDJSON)
            async for line in response.content:
                if line:
                    data = json.loads(line.decode('utf-8').strip())
                    print(f"Streamed Result: {json.dumps(data, indent=2)}")
    except Exception as e:
        print(f"Error in streaming crawl test: {str(e)}")

Metrics & Monitoring

Keep an eye on your crawler with these endpoints:

  • /health - Quick health check
  • /metrics - Detailed Prometheus metrics
  • /schema - Full API schema

Example health check:

curl http://localhost:8000/health

Deployment Scenarios

🚧 Coming soon! We'll cover:

  • Kubernetes deployment
  • Cloud provider setups (AWS, GCP, Azure)
  • High-availability configurations
  • Load balancing strategies

Complete Examples

Check out the examples folder in our repository for full working examples! Here are two to get you started: Using Client SDK Using REST API

Server Configuration

The server's behavior can be customized through the config.yml file. Let's explore how to configure your Crawl4AI server for optimal performance and security.

Understanding config.yml

The configuration file is located at deploy/docker/config.yml. You can either modify this file before building the image or mount a custom configuration when running the container.

Here's a detailed breakdown of the configuration options:

# Application Configuration
app:
  title: "Crawl4AI API"           # Server title in OpenAPI docs
  version: "1.0.0"               # API version
  host: "0.0.0.0"               # Listen on all interfaces
  port: 8000                    # Server port
  reload: True                  # Enable hot reloading (development only)
  timeout_keep_alive: 300       # Keep-alive timeout in seconds

# Rate Limiting Configuration
rate_limiting:
  enabled: True                 # Enable/disable rate limiting
  default_limit: "100/minute"   # Rate limit format: "number/timeunit"
  trusted_proxies: []          # List of trusted proxy IPs
  storage_uri: "memory://"     # Use "redis://localhost:6379" for production

# Security Configuration
security:
  enabled: false               # Master toggle for security features
  jwt_enabled: true            # Enable JWT authentication
  https_redirect: True         # Force HTTPS
  trusted_hosts: ["*"]         # Allowed hosts (use specific domains in production)
  headers:                     # Security headers
    x_content_type_options: "nosniff"
    x_frame_options: "DENY"
    content_security_policy: "default-src 'self'"
    strict_transport_security: "max-age=63072000; includeSubDomains"

# Crawler Configuration
crawler:
  memory_threshold_percent: 95.0  # Memory usage threshold
  rate_limiter:
    base_delay: [1.0, 2.0]      # Min and max delay between requests
  timeouts:
    stream_init: 30.0           # Stream initialization timeout
    batch_process: 300.0        # Batch processing timeout

# Logging Configuration
logging:
  level: "INFO"                 # Log level (DEBUG, INFO, WARNING, ERROR)
  format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

# Observability Configuration
observability:
  prometheus:
    enabled: True              # Enable Prometheus metrics
    endpoint: "/metrics"       # Metrics endpoint
  health_check:
    endpoint: "/health"        # Health check endpoint

JWT Authentication

When security.jwt_enabled is set to true in your config.yml, all endpoints require JWT authentication via bearer tokens. Here's how it works:

Getting a Token

POST /token
Content-Type: application/json

{
    "email": "user@example.com"
}

The endpoint returns:

{
    "email": "user@example.com",
    "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOi...",
    "token_type": "bearer"
}

Using the Token

Add the token to your requests:

curl -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGci..." http://localhost:8000/crawl

Using the Python SDK:

from crawl4ai.docker_client import Crawl4aiDockerClient

async with Crawl4aiDockerClient() as client:
    # Authenticate first
    await client.authenticate("user@example.com")
    
    # Now all requests will include the token automatically
    result = await client.crawl(urls=["https://example.com"])

Production Considerations 💡

The default implementation uses a simple email verification. For production use, consider:

  • Email verification via OTP/magic links
  • OAuth2 integration
  • Rate limiting token generation
  • Token expiration and refresh mechanisms
  • IP-based restrictions

Configuration Tips and Best Practices

  1. Production Settings 🏭

    app:
      reload: False              # Disable reload in production
      timeout_keep_alive: 120    # Lower timeout for better resource management
    
    rate_limiting:
      storage_uri: "redis://redis:6379"  # Use Redis for distributed rate limiting
      default_limit: "50/minute"         # More conservative rate limit
    
    security:
      enabled: true                      # Enable all security features
      trusted_hosts: ["your-domain.com"] # Restrict to your domain
  2. Development Settings 🛠️

    app:
      reload: True               # Enable hot reloading
      timeout_keep_alive: 300    # Longer timeout for debugging
    
    logging:
      level: "DEBUG"            # More verbose logging
  3. High-Traffic Settings 🚦

    crawler:
      memory_threshold_percent: 85.0  # More conservative memory limit
      rate_limiter:
        base_delay: [2.0, 4.0]       # More aggressive rate limiting

Customizing Your Configuration

Method 1: Pre-build Configuration

# Copy and modify config before building
cd crawl4ai/deploy
vim custom-config.yml # Or use any editor

# Build with custom config
docker build --platform=linux/amd64 --no-cache -t crawl4ai:latest .

Method 2: Build-time Configuration

Use a custom config during build:

# Build with custom config
docker build --platform=linux/amd64 --no-cache \
  --build-arg CONFIG_PATH=/path/to/custom-config.yml \ 
  -t crawl4ai:latest .

Method 3: Runtime Configuration

# Mount custom config at runtime
docker run -d -p 8000:8000 \
  -v $(pwd)/custom-config.yml:/app/config.yml \
  crawl4ai-server:prod

💡 Note: When using Method 2, /path/to/custom-config.yml is relative to deploy directory. 💡 Note: When using Method 3, ensure your custom config file has all required fields as the container will use this instead of the built-in config.

Configuration Recommendations

  1. Security First 🔒

    • Always enable security in production
    • Use specific trusted_hosts instead of wildcards
    • Set up proper rate limiting to protect your server
    • Consider your environment before enabling HTTPS redirect
  2. Resource Management 💻

    • Adjust memory_threshold_percent based on available RAM
    • Set timeouts according to your content size and network conditions
    • Use Redis for rate limiting in multi-container setups
  3. Monitoring 📊

    • Enable Prometheus if you need metrics
    • Set DEBUG logging in development, INFO in production
    • Regular health check monitoring is crucial
  4. Performance Tuning

    • Start with conservative rate limiter delays
    • Increase batch_process timeout for large content
    • Adjust stream_init timeout based on initial response times

Getting Help

We're here to help you succeed with Crawl4AI! Here's how to get support:

Summary

In this guide, we've covered everything you need to get started with Crawl4AI's Docker deployment:

  • Building and running the Docker container
  • Configuring the environment
  • Making API requests with proper typing
  • Using the Python SDK
  • Monitoring your deployment

Remember, the examples in the examples folder are your friends - they show real-world usage patterns that you can adapt for your needs.

Keep exploring, and don't hesitate to reach out if you need help! We're building something amazing together. 🚀

Happy crawling! 🕷️