-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
288 lines (218 loc) · 10.5 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
---
title: "R Package `lcra`"
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
# knitr::opts_chunk$set(
# collapse = TRUE,
# comment = "#>",
# fig.path = "man/figures"
# )
```
A user-friendly interface for doing joint Bayesian latent class and
regression analysis with binary and continuous outcomes.
Simply specify the regression model and number of classes and lcra
predicts class membership for each observation and accounts for
uncertainty in class membership in the estimation of the regression
parameters.
## Why use this package?
This is the only package available for joint latent class and regression
analysis. Other packages use a sequential procedure, where latent
classes are determined prior to fitting the usual regression model. The
only Bayesian alternative will require you to program the model by hand,
which can be time consuming.
## Overview
This `R` package provides a user-friendly interface for fitting Bayesian
joint latent class and regression models. Using the standard R syntax,
the user can specify the form of the regression model and the desired
number of latent classes.
The technical details of the model implemented here are described in
Elliott, Michael R., Zhao, Zhangchen, Mukherjee, Bhramar, Kanaya, Alka,
Needham, Belinda L., "Methods to account for uncertainty in latent class
assignments when using latent classes as predictors in regression
models, with application to acculturation strategy measures" (2020) In
press at Epidemiology.
## Installation
JAGS is the new default Gibbs sampler for the package. Install JAGS
here: [JAGS Download](https://mcmc-jags.sourceforge.io/).
This package uses the R interface for JAGS and WinBUGS. The package
`R2WinBUGS` in turn depends on the standalone Windows program `WinBUGS`,
and `rjags` depends on the standalone program JAGS. Follow this link:
[JAGS Download](https://mcmc-jags.sourceforge.io/) for JAGS download and
installation instructions.
Once you've chosen between JAGS or WinBUGS, open R and run:
If the devtools package is not yet installed, install it first:
```{r, eval=FALSE}
install.packages('devtools')
library(devtools)
```
```{r, eval = FALSE}
# install lcra from Github:
install_github('umich-biostatistics/lcra')
library(lcra)
```
## Example usage
### Quick example:
```{r, eval = FALSE}
inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = nrow(express))))
fit = lcra(formula = y ~ x1 + x2, family = "gaussian", data = express,
nclasses = 3, inits = inits, manifest = paste0("Z", 1:5),
n.chains = 1, n.iter = 500)
# use coda to analyze samples
library(coda)
summary(fit)
plot(fit)
```
NOTE: WinBUGS throws an error on Windows machines if you are not running
as administrator. The error reads: Error in file(con, "wb") : cannot
open the connection.
Ignore the error. Once WinBUGS is finished drawing samples, follow the
promp and return to R.
### Model
The LCRA model is as follows: 

The following priors are the default and cannot be altered by the user:
 
Please note also that the reference category for latent classes in the
outcome model output is always the Jth latent class in the output, and
the bugs output is defined by the Latin equivalent of the model
parameters (beta, alpha, tau, pi, theta). Also, the bugs output includes
the variable true, which corresponds to the MCMC draws of C_i, i =
1,...,n, as well as the MCMC draws of the deviance (DIC) statistic.
Finally the bugs output for pi is stored in a three dimensional array
corresponding to (class, variable, category), where category is indexed
by 1 through maximum K_l; for variables where the number of categories
is less than maximum K_l, these cells will be set to NA. The parameters
outputed by the lcra function currently are not user definable.
### More examples:
The main function for the joint model is `lcra()`. Use `?lcra` for the R
help file.
Here is an example analysis on simulated data with continuous and
discrete outcomes:
```{r, eval = FALSE}
# quick example
inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = nrow(express))))
fit = lcra(formula = y ~ x1 + x2, family = "gaussian", data = express,
nclasses = 3, inits = inits, manifest = paste0("Z", 1:5),
n.chains = 1, n.iter = 500)
data('paper_sim')
# Set initial values
inits =
list(
list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)),
list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)),
list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100))
)
# Fit model 1
fit.gaus_paper = lcra(formula = Y ~ X1 + X2, family = "gaussian",
data = paper_sim, nclasses = 3, manifest = paste0("Z", 1:10),
inits = inits, n.chains = 3, n.iter = 5000)
# Model 1 results
library(coda)
summary(fit.gaus_paper)
plot(fit.gaus_paper)
# simulated examples
library(gtools) # for Dirichel distribution
# with binary response
n <- 500
X1 <- runif(n, 2, 8)
X2 <- rbinom(n, 1, .5)
Cstar <- rnorm(n, .25 * X1 - .75 * X2, 1)
C <- 1 * (Cstar <= .8) + 2 * ((Cstar > .8) & (Cstar <= 1.6)) + 3 * (Cstar > 1.6)
pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1))
pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1))
pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5))
Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[1,]))%*%c(1:5)
Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[2,]))%*%c(1:5)
Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[3,]))%*%c(1:5)
Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[4,]))%*%c(1:5)
Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[5,]))%*%c(1:5)
Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[6,]))%*%c(1:5)
Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[7,]))%*%c(1:5)
Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[8,]))%*%c(1:5)
Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[9,]))%*%c(1:5)
Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[10,]))%*%c(1:5)
Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10)
Y <- rbinom(n, 1, exp(-1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2)) /
(1 + exp(1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2))))
mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10)
inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata))))
fit = lcra(formula = Y ~ X1 + X2, family = "binomial", data = mydata,
nclasses = 3, inits = inits, manifest = paste0("Z", 1:10),
n.chains = 1, n.iter = 1000)
summary(fit)
plot(fit)
# with continuous response
n <- 500
X1 <- runif(n, 2, 8)
X2 <- rbinom(n, 1, .5)
Cstar <- rnorm(n, .25*X1 - .75*X2, 1)
C <- 1 * (Cstar <= .8) + 2*((Cstar > .8) & (Cstar <= 1.6)) + 3*(Cstar > 1.6)
pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1))
pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1))
pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5))
pi4 <- rdirichlet(10, c(1, 1, 1, 1, 1))
Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[1,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[1,]))%*%c(1:5)
Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[2,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[2,]))%*%c(1:5)
Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[3,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[3,]))%*%c(1:5)
Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[4,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[4,]))%*%c(1:5)
Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[5,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[5,]))%*%c(1:5)
Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[6,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[6,]))%*%c(1:5)
Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[7,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[7,]))%*%c(1:5)
Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[8,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[8,]))%*%c(1:5)
Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[9,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[9,]))%*%c(1:5)
Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)*
t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)*
t(rmultinom(n,1,pi3[10,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[10,]))%*%c(1:5)
Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10)
Y <- rnorm(n, 10 - .5*X1 + 2*X2 + 2*(C == 1) + 1*(C == 2), 1)
mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10)
inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3),
alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata)),
tau = 0.5))
fit = lcra(formula = Y ~ X1 + X2, family = "gaussian", data = mydata,
nclasses = 3, inits = inits, manifest = paste0("Z", 1:10),
n.chains = 1, n.iter = 1000)
summary(fit)
plot(fit)
```
### Current Suggested Citation
"Methods to account for uncertainty in latent class assignments when
using latent classes as predictors in regression models, with
application to acculturation strategy measures" (2020) In press at
Epidemiology.