Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WARNING ⚠️ NMS time limit 0.340s exceeded #13332

Open
1 of 2 tasks
haniraid opened this issue Sep 25, 2024 · 2 comments
Open
1 of 2 tasks

WARNING ⚠️ NMS time limit 0.340s exceeded #13332

haniraid opened this issue Sep 25, 2024 · 2 comments
Labels
bug Something isn't working

Comments

@haniraid
Copy link

Search before asking

  • I have searched the YOLOv5 issues and found no similar bug report.

YOLOv5 Component

No response

Bug

Hi YOLO comunnity. so im running training on my cpu and i have this probleme notice that ive already checked on the previous simular issues and i found this
time_limit = 0.1 + 0.02 * bs # seconds to quit after
i applied it but the issue still here
raidhani@raidhani-All-Series:~/catkin_ws/src/yolov5$ python3 train.py --img 640 --batch 6 --epochs 100 --data /home/raidhani/catkin_ws/src/data/data.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=, data=/home/raidhani/catkin_ws/src/data/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=100, batch_size=6, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data/hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False
github: up to date with https://github.com/ultralytics/yolov5
YOLOv5 🚀 v7.0-368-gb163ff8d Python-3.8.10 torch-1.11.0+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=10

             from  n    params  module                                  arguments                     

0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 40455 models.yolo.Detect [10, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 214 layers, 7046599 parameters, 7046599 gradients, 16.0 GFLOPs

Transferred 343/349 items from yolov5s.pt
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.000515625), 60 bias
train: Scanning /home/raidhani/catkin_ws/src/data/train/labels.cache... 1008 images, 120 backgrounds, 0 corrupt: 100%|█████████
val: Scanning /home/raidhani/catkin_ws/src/data/valid/labels.cache... 230 images, 31 backgrounds, 0 corrupt: 100%|██████████| 2

AutoAnchor: 4.51 anchors/target, 0.997 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp11/labels.jpg...
Image sizes 640 train, 640 val
Using 6 dataloader workers
Logging results to runs/train/exp11
Starting training for 100 epochs...

  Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
   0/99         0G     0.1032    0.06545    0.05506         64        640: 100%|██████████| 169/169 [07:32<00:00,  2.68s/it
             Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/20 [00:00<?, ?it/sWARNING ⚠️ NMS time limit 0.340s exceeded
             Class     Images  Instances          P          R      mAP50   mAP50-95:   5%|▌         | 1/20 [00:01<00:29,  WARNING ⚠️ NMS time limit 0.340s exceeded
             Class     Images  Instances          P          R      mAP50   mAP50-95:  10%|█         | 2/20 [00:03<00:27,  WARNING ⚠️ NMS time limit 0.340s exceeded
             Class     Images  Instances          P          R      mAP50   mAP50-95:  15%|█▌        | 3/20 [00:04<00:26,  WARNING ⚠️ NMS time limit 0.340s exceeded
             Class     Images  Instances          P          R      mAP50   mAP50-95:  20%|██        | 4/20 [00:06<00:24,  WARNING ⚠️ NMS time limit 0.340s exceeded
             Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 5/20 [00:07<00:24,                   Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 5/20 [00:08<00:24,  

Traceback (most recent call last):
File "train.py", line 986, in

Environment

YOLOv5 🚀 v7.0-368-gb163ff8d Python-3.8.10 torch-1.11.0+cpu CPU

Minimal Reproducible Example

python3 train.py --img 640 --batch 6 --epochs 100 --data /home/raidhani/catkin_ws/src/data/data.yaml --weights yolov5s.pt

Additional

No response

Are you willing to submit a PR?

  • Yes I'd like to help by submitting a PR!
@haniraid haniraid added the bug Something isn't working label Sep 25, 2024
@UltralyticsAssistant
Copy link
Member

UltralyticsAssistant commented Sep 25, 2024

👋 Hello @haniraid, thank you for bringing this to our attention! This is an automated response, and an Ultralytics engineer will assist you soon.

For now, please ensure you've provided a minimum reproducible example. It helps us debug more effectively and speeds up the resolution process.

If you haven't already, you may want to explore our ⭐️ Tutorials for guidance on setup and configurations, and verify you are following our Tips for Best Training Results.

Requirements

Ensure your environment meets the following:
Python>=3.8.0 with all requirements.txt installed including PyTorch>=1.8. Start with:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 can be run in any of these environments with pre-installed dependencies, including CUDA/CUDNN:

Status

Check the current status of YOLOv5 CI tests: YOLOv5 CI

Discover YOLOv8 🚀

Explore our latest release, YOLOv8 🚀. It's fast, accurate, and user-friendly for various tasks. Get started with:

pip install ultralytics

Please provide any additional context or information to assist us further. We're here to help! 😊

@pderrenger
Copy link
Member

@haniraid the "NMS time limit exceeded" warning often indicates that your CPU is struggling with the workload. Consider reducing the batch size or using a machine with a GPU to improve performance. Additionally, ensure you're using the latest version of YOLOv5 and PyTorch. If the issue persists, please let us know.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

3 participants