Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

export onnx dims #10414

Closed
1 task done
alicera opened this issue Dec 6, 2022 · 6 comments
Closed
1 task done

export onnx dims #10414

alicera opened this issue Dec 6, 2022 · 6 comments
Labels
question Further information is requested Stale Stale and schedule for closing soon

Comments

@alicera
Copy link

alicera commented Dec 6, 2022

Search before asking

Question

I expect the result for onnx

Inputs:  ['images']
Outputs:  ['output', '516', '530'] 

##########################################
input name images
input shape [1, 3, 640, 640]
input type tensor(float) 

output name: output
output shape: [1, 3, 80, 80, 6]
output type: tensor(float) 

output name: 516
output shape: [1, 3, 40, 40, 6]
output type: tensor(float) 

output name: 530
output shape: [1, 3, 20, 20, 6]
output type: tensor(float) 

I try command
python export.py --inplace
or
python export.py

It always combine all the output to one.

Additional

No response

@alicera alicera added the question Further information is requested label Dec 6, 2022
@alicera
Copy link
Author

alicera commented Dec 6, 2022

How can I get the three output with onnx?

@glenn-jocher
Copy link
Member

glenn-jocher commented Dec 6, 2022

@alicera 👋 Hello! Thanks for asking about Export Formats. YOLOv5 🚀 offers export to almost all of the common export formats. See our TFLite, ONNX, CoreML, TensorRT Export Tutorial for full details.

Unified output is correct and expected.

Formats

YOLOv5 inference is officially supported in 11 formats:

💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See CPU Benchmarks.
💡 ProTip: Export to TensorRT for up to 5x GPU speedup. See GPU Benchmarks.

Format export.py --include Model
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

Benchmarks

Benchmarks below run on a Colab Pro with the YOLOv5 tutorial notebook Open In Colab. To reproduce:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Export a Trained YOLOv5 Model

This command exports a pretrained YOLOv5s model to TorchScript and ONNX formats. yolov5s.pt is the 'small' model, the second smallest model available. Other options are yolov5n.pt, yolov5m.pt, yolov5l.pt and yolov5x.pt, along with their P6 counterparts i.e. yolov5s6.pt or you own custom training checkpoint i.e. runs/exp/weights/best.pt. For details on all available models please see our README table.

python export.py --weights yolov5s.pt --include torchscript onnx

💡 ProTip: Add --half to export models at FP16 half precision for smaller file sizes

Output:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.7.13 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers... 
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx 
Validate:        python val.py --weights yolov5s.onnx 
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

The 3 exported models will be saved alongside the original PyTorch model:

Netron Viewer is recommended for visualizing exported models:

Exported Model Usage Examples

detect.py runs inference on exported models:

python detect.py --weights yolov5s.pt                 # PyTorch
                           yolov5s.torchscript        # TorchScript
                           yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                           yolov5s_openvino_model     # OpenVINO
                           yolov5s.engine             # TensorRT
                           yolov5s.mlmodel            # CoreML (macOS only)
                           yolov5s_saved_model        # TensorFlow SavedModel
                           yolov5s.pb                 # TensorFlow GraphDef
                           yolov5s.tflite             # TensorFlow Lite
                           yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                           yolov5s_paddle_model       # PaddlePaddle

val.py runs validation on exported models:

python val.py --weights yolov5s.pt                 # PyTorch
                        yolov5s.torchscript        # TorchScript
                        yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                        yolov5s_openvino_model     # OpenVINO
                        yolov5s.engine             # TensorRT
                        yolov5s.mlmodel            # CoreML (macOS Only)
                        yolov5s_saved_model        # TensorFlow SavedModel
                        yolov5s.pb                 # TensorFlow GraphDef
                        yolov5s.tflite             # TensorFlow Lite
                        yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                        yolov5s_paddle_model       # PaddlePaddle

Use PyTorch Hub with exported YOLOv5 models:

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
                                                       'yolov5s.torchscript ')       # TorchScript
                                                       'yolov5s.onnx')               # ONNX Runtime
                                                       'yolov5s_openvino_model')     # OpenVINO
                                                       'yolov5s.engine')             # TensorRT
                                                       'yolov5s.mlmodel')            # CoreML (macOS Only)
                                                       'yolov5s_saved_model')        # TensorFlow SavedModel
                                                       'yolov5s.pb')                 # TensorFlow GraphDef
                                                       'yolov5s.tflite')             # TensorFlow Lite
                                                       'yolov5s_edgetpu.tflite')     # TensorFlow Edge TPU
                                                       'yolov5s_paddle_model')       # PaddlePaddle

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

OpenCV DNN inference

OpenCV inference with ONNX models:

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn  # detect
python val.py --weights yolov5s.onnx --dnn  # validate

C++ Inference

YOLOv5 OpenCV DNN C++ inference on exported ONNX model examples:

YOLOv5 OpenVINO C++ inference examples:

Good luck 🍀 and let us know if you have any other questions!

@kXborg
Copy link

kXborg commented Dec 27, 2022

Observations:

  1. ONNX export fails with default requirements. Where opset version is set to 17.
  2. Lowering to 15 does work with a warning but fails during OpenCV DNN inference.
  3. Opset = 12 only works.

Tested with,

torch==1.11 
torchvision==0.12.0
onnx==1.13.0

Would like to understand why this is happening.

@shihuinaiii
Copy link

I also encountered the same problem as you, have you solved it now?

@kXborg
Copy link

kXborg commented Jan 11, 2023

Hi @shihuinaiii,

Unfortunately not. I can only see it working with the above-mentioned setting. Not with the latest. What does opset version do exactly.

@github-actions
Copy link
Contributor

github-actions bot commented Feb 11, 2023

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

@github-actions github-actions bot added the Stale Stale and schedule for closing soon label Feb 11, 2023
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Feb 21, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested Stale Stale and schedule for closing soon
Projects
None yet
Development

No branches or pull requests

4 participants