Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to increase detection speed #10171

Closed
1 task done
Baurzhan112 opened this issue Nov 16, 2022 · 4 comments
Closed
1 task done

how to increase detection speed #10171

Baurzhan112 opened this issue Nov 16, 2022 · 4 comments
Labels
question Further information is requested Stale Stale and schedule for closing soon

Comments

@Baurzhan112
Copy link

Baurzhan112 commented Nov 16, 2022

Search before asking

Question

Cloned this repository and ran detect.py on a short 10 second video. The average Yolo processing time for each frame is about 0.8 seconds. How can I speed up the detection work? I tried to run detect.py with additional parameter --weights yolov5s_openvino_model. Got error: "No module named openvino.runtime

image_2022-11-16_14-52-12

Additional

No response

@Baurzhan112 Baurzhan112 added the question Further information is requested label Nov 16, 2022
@github-actions
Copy link
Contributor

github-actions bot commented Nov 16, 2022

👋 Hello @Baurzhan112, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

YOLOv5 CI

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training, validation, inference, export and benchmarks on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

@glenn-jocher
Copy link
Member

glenn-jocher commented Nov 16, 2022

@Baurzhan112 👋 Hello! Thanks for asking about inference speed issues. PyTorch Hub speeds will vary by hardware, software, model, inference settings, etc. Our default example in Colab with a V100 looks like this:

Screen Shot 2022-05-03 at 10 20 39 AM

YOLOv5 🚀 can be run on CPU (i.e. --device cpu, slow) or GPU if available (i.e. --device 0, faster). You can determine your inference device by viewing the YOLOv5 console output:

detect.py inference

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/

Screen Shot 2022-05-03 at 2 48 42 PM

YOLOv5 PyTorch Hub inference

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Images
dir = 'https://ultralytics.com/images/'
imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')]  # batch of images

# Inference
results = model(imgs)
results.print()  # or .show(), .save()
# Speed: 631.5ms pre-process, 19.2ms inference, 1.6ms NMS per image at shape (2, 3, 640, 640)

Increase Speeds

If you would like to increase your inference speed some options are:

  • Use batched inference with YOLOv5 PyTorch Hub
  • Reduce --img-size, i.e. 1280 -> 640 -> 320
  • Reduce model size, i.e. YOLOv5x -> YOLOv5l -> YOLOv5m -> YOLOv5s -> YOLOv5n
  • Use half precision FP16 inference with python detect.py --half and python val.py --half
  • Use a faster GPUs, i.e.: P100 -> V100 -> A100
  • Export to ONNX or OpenVINO for up to 3x CPU speedup (CPU Benchmarks)
  • Export to TensorRT for up to 5x GPU speedup (GPU Benchmarks)
  • Use a free GPU backends with up to 16GB of CUDA memory: Open In Colab Open In Kaggle

Good luck 🍀 and let us know if you have any other questions!

@glenn-jocher
Copy link
Member

👋 Hello! Thanks for asking about YOLOv5 🚀 benchmarks. YOLOv5 inference is officially supported in 11 formats, and all formats are benchmarked for identical accuracy and to compare speed every 24 hours by the YOLOv5 CI.

💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See CPU Benchmarks.
💡 ProTip: Export to TensorRT for up to 5x GPU speedup. See GPU Benchmarks.

Format export.py --include Model
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/

Benchmarks

Benchmarks below run on a Colab Pro with the YOLOv5 tutorial notebook Open In Colab. To reproduce:

python utils/benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Good luck 🍀 and let us know if you have any other questions!

@github-actions
Copy link
Contributor

github-actions bot commented Dec 17, 2022

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

@github-actions github-actions bot added the Stale Stale and schedule for closing soon label Dec 17, 2022
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Dec 27, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested Stale Stale and schedule for closing soon
Projects
None yet
Development

No branches or pull requests

2 participants