diff --git a/utils/loss.py b/utils/loss.py index 5aa9f017d2af..0f0137817955 100644 --- a/utils/loss.py +++ b/utils/loss.py @@ -89,9 +89,10 @@ def forward(self, pred, true): class ComputeLoss: + sort_obj_iou = False + # Compute losses def __init__(self, model, autobalance=False): - self.sort_obj_iou = False device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters @@ -111,26 +112,28 @@ def __init__(self, model, autobalance=False): self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance + self.device = device for k in 'na', 'nc', 'nl', 'anchors': setattr(self, k, getattr(det, k)) - def __call__(self, p, targets): # predictions, targets, model - device = targets.device - lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + def __call__(self, p, targets): # predictions, targets + lcls = torch.zeros(1, device=self.device) # class loss + lbox = torch.zeros(1, device=self.device) # box loss + lobj = torch.zeros(1, device=self.device) # object loss tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx - tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + tobj = torch.zeros(pi.shape[:4], device=self.device) # target obj n = b.shape[0] # number of targets if n: - ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # target-subset of predictions # Regression - pxy = ps[:, :2].sigmoid() * 2 - 0.5 - pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pxy = pxy.sigmoid() * 2 - 0.5 + pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss @@ -144,9 +147,9 @@ def __call__(self, p, targets): # predictions, targets, model # Classification if self.nc > 1: # cls loss (only if multiple classes) - t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t = torch.full_like(pcls, self.cn, device=self.device) # targets t[range(n), tcls[i]] = self.cp - lcls += self.BCEcls(ps[:, 5:], t) # BCE + lcls += self.BCEcls(pcls, t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: @@ -170,15 +173,15 @@ def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] - gain = torch.ones(7, device=targets.device) # normalized to gridspace gain - ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + gain = torch.ones(7, device=self.device) # normalized to gridspace gain + ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm - ], device=targets.device).float() * g # offsets + ], device=self.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] @@ -206,14 +209,12 @@ def build_targets(self, p, targets): offsets = 0 # Define - b, c = t[:, :2].long().T # image, class - gxy = t[:, 2:4] # grid xy - gwh = t[:, 4:6] # grid wh + bc, gxy, gwh, a = t.unsafe_chunk(4, dim=1) # (image, class), grid xy, grid wh, anchors + a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class gij = (gxy - offsets).long() - gi, gj = gij.T # grid xy indices + gi, gj = gij.T # grid indices # Append - a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors