diff --git a/data/Argoverse_HD.yaml b/data/Argoverse.yaml similarity index 97% rename from data/Argoverse_HD.yaml rename to data/Argoverse.yaml index e379b1ec99df..c42624c5783f 100644 --- a/data/Argoverse_HD.yaml +++ b/data/Argoverse.yaml @@ -1,6 +1,6 @@ # YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ -# Example usage: python train.py --data Argoverse_HD.yaml +# Example usage: python train.py --data Argoverse.yaml # parent # ├── yolov5 # └── datasets diff --git a/hubconf.py b/hubconf.py index 55536c3a42f3..7ef512655ae2 100644 --- a/hubconf.py +++ b/hubconf.py @@ -27,7 +27,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo from models.yolo import Model, attempt_load from utils.general import check_requirements, set_logging - from utils.google_utils import attempt_download + from utils.downloads import attempt_download from utils.torch_utils import select_device file = Path(__file__).absolute() diff --git a/models/experimental.py b/models/experimental.py index 0d996d913b0c..276ca954b173 100644 --- a/models/experimental.py +++ b/models/experimental.py @@ -5,7 +5,7 @@ import torch.nn as nn from models.common import Conv, DWConv -from utils.google_utils import attempt_download +from utils.downloads import attempt_download class CrossConv(nn.Module): diff --git a/train.py b/train.py index bd1fa9c74328..020883ce98ba 100644 --- a/train.py +++ b/train.py @@ -35,7 +35,7 @@ from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ check_requirements, print_mutation, set_logging, one_cycle, colorstr -from utils.google_utils import attempt_download +from utils.downloads import attempt_download from utils.loss import ComputeLoss from utils.plots import plot_labels, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel @@ -78,9 +78,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) - with open(data, encoding='ascii', errors='ignore') as f: - data_dict = yaml.safe_load(f) - + with torch_distributed_zero_first(RANK): + data_dict = check_dataset(data) # check + train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check @@ -106,9 +106,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create - with torch_distributed_zero_first(RANK): - check_dataset(data_dict) # check - train_path, val_path = data_dict['train'], data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) diff --git a/utils/datasets.py b/utils/datasets.py index 5b5ded4bbc41..fffe39a61459 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -884,11 +884,11 @@ def verify_image_label(args): return [None, None, None, None, nm, nf, ne, nc, msg] -def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False): +def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False): """ Return dataset statistics dictionary with images and instances counts per split per class - Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True) - Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128.zip', verbose=True) - + To run in parent directory: export PYTHONPATH="$PWD/yolov5" + Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True) + Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip') Arguments path: Path to data.yaml or data.zip (with data.yaml inside data.zip) autodownload: Attempt to download dataset if not found locally @@ -897,35 +897,42 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False): def round_labels(labels): # Update labels to integer class and 6 decimal place floats - return [[int(c), *[round(x, 6) for x in points]] for c, *points in labels] + return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels] def unzip(path): # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/' if str(path).endswith('.zip'): # path is data.zip + assert Path(path).is_file(), f'Error unzipping {path}, file not found' assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}' - data_dir = path.with_suffix('') # dataset directory - return True, data_dir, list(data_dir.rglob('*.yaml'))[0] # zipped, data_dir, yaml_path + dir = path.with_suffix('') # dataset directory + return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path else: # path is data.yaml return False, None, path + def hub_ops(f, max_dim=1920): + # HUB ops for 1 image 'f' + im = Image.open(f) + r = max_dim / max(im.height, im.width) # ratio + if r < 1.0: # image too large + im = im.resize((int(im.width * r), int(im.height * r))) + im.save(im_dir / Path(f).name, quality=75) # save + zipped, data_dir, yaml_path = unzip(Path(path)) with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f: data = yaml.safe_load(f) # data dict if zipped: data['path'] = data_dir # TODO: should this be dir.resolve()? check_dataset(data, autodownload) # download dataset if missing - nc = data['nc'] # number of classes - stats = {'nc': nc, 'names': data['names']} # statistics dictionary + hub_dir = Path(data['path'] + ('-hub' if hub else '')) + stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary for split in 'train', 'val', 'test': if data.get(split) is None: stats[split] = None # i.e. no test set continue x = [] - dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset - if split == 'train': - cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path + dataset = LoadImagesAndLabels(data[split]) # load dataset for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'): - x.append(np.bincount(label[:, 0].astype(int), minlength=nc)) + x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc'])) x = np.array(x) # shape(128x80) stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()}, 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), @@ -933,10 +940,37 @@ def unzip(path): 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in zip(dataset.img_files, dataset.labels)]} + if hub: + im_dir = hub_dir / 'images' + im_dir.mkdir(parents=True, exist_ok=True) + for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'): + pass + + # Profile + stats_path = hub_dir / 'stats.json' + if profile: + for _ in range(1): + file = stats_path.with_suffix('.npy') + t1 = time.time() + np.save(file, stats) + t2 = time.time() + x = np.load(file, allow_pickle=True) + print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') + + file = stats_path.with_suffix('.json') + t1 = time.time() + with open(file, 'w') as f: + json.dump(stats, f) # save stats *.json + t2 = time.time() + with open(file, 'r') as f: + x = json.load(f) # load hyps dict + print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') + # Save, print and return - with open(cache_path.with_suffix('.json'), 'w') as f: - json.dump(stats, f) # save stats *.json + if hub: + print(f'Saving {stats_path.resolve()}...') + with open(stats_path, 'w') as f: + json.dump(stats, f) # save stats.json if verbose: print(json.dumps(stats, indent=2, sort_keys=False)) - # print(yaml.dump([stats], sort_keys=False, default_flow_style=False)) return stats diff --git a/utils/google_utils.py b/utils/downloads.py similarity index 98% rename from utils/google_utils.py rename to utils/downloads.py index aefc7de2db2e..00156962380b 100644 --- a/utils/google_utils.py +++ b/utils/downloads.py @@ -1,4 +1,4 @@ -# Google utils: https://cloud.google.com/storage/docs/reference/libraries +# Download utils import os import platform @@ -115,6 +115,10 @@ def get_token(cookie="./cookie"): return line.split()[-1] return "" + +# Google utils: https://cloud.google.com/storage/docs/reference/libraries ---------------------------------------------- +# +# # def upload_blob(bucket_name, source_file_name, destination_blob_name): # # Uploads a file to a bucket # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python diff --git a/utils/general.py b/utils/general.py index db81f7679cd7..6b00ddf2ff72 100755 --- a/utils/general.py +++ b/utils/general.py @@ -24,7 +24,7 @@ import torchvision import yaml -from utils.google_utils import gsutil_getsize +from utils.downloads import gsutil_getsize from utils.metrics import box_iou, fitness from utils.torch_utils import init_torch_seeds @@ -224,16 +224,30 @@ def check_file(file): def check_dataset(data, autodownload=True): - # Download dataset if not found locally - path = Path(data.get('path', '')) # optional 'path' field - if path: - for k in 'train', 'val', 'test': - if data.get(k): # prepend path - data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] + # Download and/or unzip dataset if not found locally + # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip + + # Download (optional) + extract_dir = '' + if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip + download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1) + data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml')) + extract_dir, autodownload = data.parent, False + + # Read yaml (optional) + if isinstance(data, (str, Path)): + with open(data, encoding='ascii', errors='ignore') as f: + data = yaml.safe_load(f) # dictionary + + # Parse yaml + path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.' + for k in 'train', 'val', 'test': + if data.get(k): # prepend path + data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] assert 'nc' in data, "Dataset 'nc' key missing." if 'names' not in data: - data['names'] = [str(i) for i in range(data['nc'])] # assign class names if missing + data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')] if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path @@ -256,13 +270,17 @@ def check_dataset(data, autodownload=True): else: raise Exception('Dataset not found.') + return data # dictionary + def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1): - # Multi-threaded file download and unzip function + # Multi-threaded file download and unzip function, used in data.yaml for autodownload def download_one(url, dir): # Download 1 file f = dir / Path(url).name # filename - if not f.exists(): + if Path(url).is_file(): # exists in current path + Path(url).rename(f) # move to dir + elif not f.exists(): print(f'Downloading {url} to {f}...') if curl: os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail @@ -286,7 +304,7 @@ def download_one(url, dir): pool.close() pool.join() else: - for u in tuple(url) if isinstance(url, str) else url: + for u in [url] if isinstance(url, (str, Path)) else url: download_one(u, dir) diff --git a/utils/loggers/wandb/wandb_utils.py b/utils/loggers/wandb/wandb_utils.py index cd5939155169..f4f228df4e24 100644 --- a/utils/loggers/wandb/wandb_utils.py +++ b/utils/loggers/wandb/wandb_utils.py @@ -100,7 +100,7 @@ class WandbLogger(): """ def __init__(self, opt, run_id, data_dict, job_type='Training'): - ''' + """ - Initialize WandbLogger instance - Upload dataset if opt.upload_dataset is True - Setup trainig processes if job_type is 'Training' @@ -111,7 +111,7 @@ def __init__(self, opt, run_id, data_dict, job_type='Training'): data_dict (Dict) -- Dictionary conataining info about the dataset to be used job_type (str) -- To set the job_type for this run - ''' + """ # Pre-training routine -- self.job_type = job_type self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run @@ -157,7 +157,7 @@ def __init__(self, opt, run_id, data_dict, job_type='Training'): self.data_dict = self.check_and_upload_dataset(opt) def check_and_upload_dataset(self, opt): - ''' + """ Check if the dataset format is compatible and upload it as W&B artifact arguments: @@ -165,7 +165,7 @@ def check_and_upload_dataset(self, opt): returns: Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links. - ''' + """ assert wandb, 'Install wandb to upload dataset' config_path = self.log_dataset_artifact(check_file(opt.data), opt.single_cls, @@ -176,7 +176,7 @@ def check_and_upload_dataset(self, opt): return wandb_data_dict def setup_training(self, opt, data_dict): - ''' + """ Setup the necessary processes for training YOLO models: - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded @@ -188,7 +188,7 @@ def setup_training(self, opt, data_dict): returns: data_dict (Dict) -- contains the updated info about the dataset to be used for training - ''' + """ self.log_dict, self.current_epoch = {}, 0 self.bbox_interval = opt.bbox_interval if isinstance(opt.resume, str): @@ -224,7 +224,7 @@ def setup_training(self, opt, data_dict): return data_dict def download_dataset_artifact(self, path, alias): - ''' + """ download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX arguments: @@ -234,7 +234,7 @@ def download_dataset_artifact(self, path, alias): returns: (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset is found otherwise returns (None, None) - ''' + """ if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/")) @@ -244,12 +244,12 @@ def download_dataset_artifact(self, path, alias): return None, None def download_model_artifact(self, opt): - ''' + """ download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX arguments: opt (namespace) -- Commandline arguments for this run - ''' + """ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' @@ -262,7 +262,7 @@ def download_model_artifact(self, opt): return None, None def log_model(self, path, opt, epoch, fitness_score, best_model=False): - ''' + """ Log the model checkpoint as W&B artifact arguments: @@ -271,7 +271,7 @@ def log_model(self, path, opt, epoch, fitness_score, best_model=False): epoch (int) -- Current epoch number fitness_score (float) -- fitness score for current epoch best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. - ''' + """ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ 'original_url': str(path), 'epochs_trained': epoch + 1, @@ -286,7 +286,7 @@ def log_model(self, path, opt, epoch, fitness_score, best_model=False): print("Saving model artifact on epoch ", epoch + 1) def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): - ''' + """ Log the dataset as W&B artifact and return the new data file with W&B links arguments: @@ -298,10 +298,8 @@ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config= returns: the new .yaml file with artifact links. it can be used to start training directly from artifacts - ''' - with open(data_file, encoding='ascii', errors='ignore') as f: - data = yaml.safe_load(f) # data dict - check_dataset(data) + """ + data = check_dataset(data_file) # parse and check nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) names = {k: v for k, v in enumerate(names)} # to index dictionary self.train_artifact = self.create_dataset_table(LoadImagesAndLabels( @@ -330,17 +328,17 @@ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config= return path def map_val_table_path(self): - ''' + """ Map the validation dataset Table like name of file -> it's id in the W&B Table. Useful for - referencing artifacts for evaluation. - ''' + """ self.val_table_path_map = {} print("Mapping dataset") for i, data in enumerate(tqdm(self.val_table.data)): self.val_table_path_map[data[3]] = data[0] def create_dataset_table(self, dataset, class_to_id, name='dataset'): - ''' + """ Create and return W&B artifact containing W&B Table of the dataset. arguments: @@ -350,7 +348,7 @@ def create_dataset_table(self, dataset, class_to_id, name='dataset'): returns: dataset artifact to be logged or used - ''' + """ # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging artifact = wandb.Artifact(name=name, type="dataset") img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None @@ -382,14 +380,14 @@ def create_dataset_table(self, dataset, class_to_id, name='dataset'): return artifact def log_training_progress(self, predn, path, names): - ''' + """ Build evaluation Table. Uses reference from validation dataset table. arguments: predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class] path (str): local path of the current evaluation image names (dict(int, str)): hash map that maps class ids to labels - ''' + """ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) box_data = [] total_conf = 0 @@ -412,17 +410,17 @@ def log_training_progress(self, predn, path, names): ) def val_one_image(self, pred, predn, path, names, im): - ''' + """ Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel arguments: pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class] path (str): local path of the current evaluation image - ''' + """ if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact self.log_training_progress(predn, path, names) - + if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0: if self.current_epoch % self.bbox_interval == 0: box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, @@ -434,23 +432,23 @@ def val_one_image(self, pred, predn, path, names, im): self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name)) def log(self, log_dict): - ''' + """ save the metrics to the logging dictionary arguments: log_dict (Dict) -- metrics/media to be logged in current step - ''' + """ if self.wandb_run: for key, value in log_dict.items(): self.log_dict[key] = value def end_epoch(self, best_result=False): - ''' + """ commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. arguments: best_result (boolean): Boolean representing if the result of this evaluation is best or not - ''' + """ if self.wandb_run: with all_logging_disabled(): if self.bbox_media_panel_images: @@ -468,9 +466,9 @@ def end_epoch(self, best_result=False): self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") def finish_run(self): - ''' + """ Log metrics if any and finish the current W&B run - ''' + """ if self.wandb_run: if self.log_dict: with all_logging_disabled(): diff --git a/val.py b/val.py index c58bcdb209c2..ee2287644b92 100644 --- a/val.py +++ b/val.py @@ -123,9 +123,7 @@ def run(data, # model = nn.DataParallel(model) # Data - with open(data, encoding='ascii', errors='ignore') as f: - data = yaml.safe_load(f) - check_dataset(data) # check + data = check_dataset(data) # check # Half half &= device.type != 'cpu' # half precision only supported on CUDA