From 43a616a9551cd53f031c05688884927ba0c13513 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Tue, 28 Jul 2020 15:38:56 -0700 Subject: [PATCH] PyTorch 1.6.0 compatability updates --- detect.py | 2 +- models/yolo.py | 5 +++-- test.py | 6 +++--- 3 files changed, 7 insertions(+), 6 deletions(-) diff --git a/detect.py b/detect.py index 6f4aead7f782..f3b9b09ab565 100644 --- a/detect.py +++ b/detect.py @@ -154,7 +154,7 @@ def detect(save_img=False): with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) - for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']: + for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() strip_optimizer(opt.weights) else: diff --git a/models/yolo.py b/models/yolo.py index 47a35e241981..bcd9cbde45a9 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -90,9 +90,9 @@ def forward(self, x, augment=False, profile=False): yi = self.forward_once(xi)[0] # forward # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi[..., :4] /= si # de-scale - if fi is 2: + if fi == 2: yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud - elif fi is 3: + elif fi == 3: yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr y.append(yi) return torch.cat(y, 1), None # augmented inference, train @@ -148,6 +148,7 @@ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers print('Fusing layers... ', end='') for m in self.model.modules(): if type(m) is Conv: + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv m.bn = None # remove batchnorm m.forward = m.fuseforward # update forward diff --git a/test.py b/test.py index b1e6a231eec1..c997157643e4 100644 --- a/test.py +++ b/test.py @@ -148,8 +148,8 @@ def test(data, # Per target class for cls in torch.unique(tcls_tensor): - ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices - pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices + ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices + pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices # Search for detections if pi.shape[0]: @@ -157,7 +157,7 @@ def test(data, ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices # Append detections - for j in (ious > iouv[0]).nonzero(): + for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d not in detected: detected.append(d)