-
-
Notifications
You must be signed in to change notification settings - Fork 16.4k
/
common.py
1109 lines (946 loc) Β· 50.9 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Ultralytics YOLOv5 π, AGPL-3.0 license
"""Common modules."""
import ast
import contextlib
import json
import math
import platform
import warnings
import zipfile
from collections import OrderedDict, namedtuple
from copy import copy
from pathlib import Path
from urllib.parse import urlparse
import cv2
import numpy as np
import pandas as pd
import requests
import torch
import torch.nn as nn
from PIL import Image
from torch.cuda import amp
# Import 'ultralytics' package or install if missing
try:
import ultralytics
assert hasattr(ultralytics, "__version__") # verify package is not directory
except (ImportError, AssertionError):
import os
os.system("pip install -U ultralytics")
import ultralytics
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from utils import TryExcept
from utils.dataloaders import exif_transpose, letterbox
from utils.general import (
LOGGER,
ROOT,
Profile,
check_requirements,
check_suffix,
check_version,
colorstr,
increment_path,
is_jupyter,
make_divisible,
non_max_suppression,
scale_boxes,
xywh2xyxy,
xyxy2xywh,
yaml_load,
)
from utils.torch_utils import copy_attr, smart_inference_mode
def autopad(k, p=None, d=1):
"""
Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.
`k`: kernel, `p`: padding, `d`: dilation.
"""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Applies a convolution, batch normalization, and activation function to an input tensor in a neural network."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initializes a standard convolution layer with optional batch normalization and activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Applies a fused convolution and activation function to the input tensor `x`."""
return self.act(self.conv(x))
class DWConv(Conv):
"""Implements a depth-wise convolution layer with optional activation for efficient spatial filtering."""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
"""Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output
channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).
"""
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
class DWConvTranspose2d(nn.ConvTranspose2d):
"""A depth-wise transpose convolutional layer for upsampling in neural networks, particularly in YOLOv5 models."""
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
"""Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels
(c2), kernel size (k), stride (s), input padding (p1), output padding (p2).
"""
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class TransformerLayer(nn.Module):
"""Transformer layer with multihead attention and linear layers, optimized by removing LayerNorm."""
def __init__(self, c, num_heads):
"""
Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.
See as described in https://arxiv.org/abs/2010.11929.
"""
super().__init__()
self.q = nn.Linear(c, c, bias=False)
self.k = nn.Linear(c, c, bias=False)
self.v = nn.Linear(c, c, bias=False)
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
self.fc1 = nn.Linear(c, c, bias=False)
self.fc2 = nn.Linear(c, c, bias=False)
def forward(self, x):
"""Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
x = self.fc2(self.fc1(x)) + x
return x
class TransformerBlock(nn.Module):
"""A Transformer block for vision tasks with convolution, position embeddings, and Transformer layers."""
def __init__(self, c1, c2, num_heads, num_layers):
"""Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified
layers.
"""
super().__init__()
self.conv = None
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
self.c2 = c2
def forward(self, x):
"""Processes input through an optional convolution, followed by Transformer layers and position embeddings for
object detection.
"""
if self.conv is not None:
x = self.conv(x)
b, _, w, h = x.shape
p = x.flatten(2).permute(2, 0, 1)
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
class Bottleneck(nn.Module):
"""A bottleneck layer with optional shortcut and group convolution for efficient feature extraction."""
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
"""Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel
expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a
tensor.
"""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
"""CSP bottleneck layer for feature extraction with cross-stage partial connections and optional shortcuts."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,
groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.SiLU()
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
"""Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-
enhanced output.
"""
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
class CrossConv(nn.Module):
"""Implements a cross convolution layer with downsampling, expansion, and optional shortcut."""
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
"""
Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output
channels.
Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
"""Implements a CSP Bottleneck module with three convolutions for enhanced feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
convolutions, and expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
"""Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3x(C3):
"""Extends the C3 module with cross-convolutions for enhanced feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,
and expansion.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
class C3TR(C3):
"""C3 module with TransformerBlock for enhanced feature extraction in object detection models."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut
config, group, and expansion.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = TransformerBlock(c_, c_, 4, n)
class C3SPP(C3):
"""Extends the C3 module with an SPP layer for enhanced spatial feature extraction and customizable channels."""
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
"""Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel
sizes, shortcut, group, and expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = SPP(c_, c_, k)
class C3Ghost(C3):
"""Implements a C3 module with Ghost Bottlenecks for efficient feature extraction in YOLOv5."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
class SPP(nn.Module):
"""Implements Spatial Pyramid Pooling (SPP) for feature extraction, ref: https://arxiv.org/abs/1406.4729."""
def __init__(self, c1, c2, k=(5, 9, 13)):
"""Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
"""Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output
tensor.
"""
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class SPPF(nn.Module):
"""Implements a fast Spatial Pyramid Pooling (SPPF) layer for efficient feature extraction in YOLOv5 models."""
def __init__(self, c1, c2, k=5):
"""
Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and
max pooling.
Equivalent to SPP(k=(5, 9, 13)).
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
"""Processes input through a series of convolutions and max pooling operations for feature extraction."""
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
class Focus(nn.Module):
"""Focuses spatial information into channel space using slicing and convolution for efficient feature extraction."""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
"""Initializes Focus module to concentrate width-height info into channel space with configurable convolution
parameters.
"""
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
# self.contract = Contract(gain=2)
def forward(self, x):
"""Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
# return self.conv(self.contract(x))
class GhostConv(nn.Module):
"""Implements Ghost Convolution for efficient feature extraction, see https://github.com/huawei-noah/ghostnet."""
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
"""Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels
for efficiency.
"""
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
def forward(self, x):
"""Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""
y = self.cv1(x)
return torch.cat((y, self.cv2(y)), 1)
class GhostBottleneck(nn.Module):
"""Efficient bottleneck layer using Ghost Convolutions, see https://github.com/huawei-noah/ghostnet."""
def __init__(self, c1, c2, k=3, s=1):
"""Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""
super().__init__()
c_ = c2 // 2
self.conv = nn.Sequential(
GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False),
) # pw-linear
self.shortcut = (
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
)
def forward(self, x):
"""Processes input through conv and shortcut layers, returning their summed output."""
return self.conv(x) + self.shortcut(x)
class Contract(nn.Module):
"""Contracts spatial dimensions into channel dimensions for efficient processing in neural networks."""
def __init__(self, gain=2):
"""Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape
(1,64,80,80) to (1,256,40,40).
"""
super().__init__()
self.gain = gain
def forward(self, x):
"""Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape
`(b, c*s*s, h//s, w//s)`.
"""
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
class Expand(nn.Module):
"""Expands spatial dimensions by redistributing channels, e.g., from (1,64,80,80) to (1,16,160,160)."""
def __init__(self, gain=2):
"""
Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain
factor.
Example: x(1,64,80,80) to x(1,16,160,160).
"""
super().__init__()
self.gain = gain
def forward(self, x):
"""Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==
0.
"""
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
s = self.gain
x = x.view(b, s, s, c // s**2, h, w) # x(1,2,2,16,80,80)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
return x.view(b, c // s**2, h * s, w * s) # x(1,16,160,160)
class Concat(nn.Module):
"""Concatenates tensors along a specified dimension for efficient tensor manipulation in neural networks."""
def __init__(self, dimension=1):
"""Initializes a Concat module to concatenate tensors along a specified dimension."""
super().__init__()
self.d = dimension
def forward(self, x):
"""Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an
int.
"""
return torch.cat(x, self.d)
class DetectMultiBackend(nn.Module):
"""YOLOv5 MultiBackend class for inference on various backends including PyTorch, ONNX, TensorRT, and more."""
def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True):
"""Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""
# PyTorch: weights = *.pt
# TorchScript: *.torchscript
# ONNX Runtime: *.onnx
# ONNX OpenCV DNN: *.onnx --dnn
# OpenVINO: *_openvino_model
# CoreML: *.mlpackage
# TensorRT: *.engine
# TensorFlow SavedModel: *_saved_model
# TensorFlow GraphDef: *.pb
# TensorFlow Lite: *.tflite
# TensorFlow Edge TPU: *_edgetpu.tflite
# PaddlePaddle: *_paddle_model
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
fp16 &= pt or jit or onnx or engine or triton # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
if not (pt or triton):
w = attempt_download(w) # download if not local
if pt: # PyTorch
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
stride = max(int(model.stride.max()), 32) # model stride
names = model.module.names if hasattr(model, "module") else model.names # get class names
model.half() if fp16 else model.float()
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
elif jit: # TorchScript
LOGGER.info(f"Loading {w} for TorchScript inference...")
extra_files = {"config.txt": ""} # model metadata
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
model.half() if fp16 else model.float()
if extra_files["config.txt"]: # load metadata dict
d = json.loads(
extra_files["config.txt"],
object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},
)
stride, names = int(d["stride"]), d["names"]
elif dnn: # ONNX OpenCV DNN
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
check_requirements("opencv-python>=4.5.4")
net = cv2.dnn.readNetFromONNX(w)
elif onnx: # ONNX Runtime
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
import onnxruntime
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
session = onnxruntime.InferenceSession(w, providers=providers)
output_names = [x.name for x in session.get_outputs()]
meta = session.get_modelmeta().custom_metadata_map # metadata
if "stride" in meta:
stride, names = int(meta["stride"]), eval(meta["names"])
elif xml: # OpenVINO
LOGGER.info(f"Loading {w} for OpenVINO inference...")
check_requirements("openvino>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
from openvino.runtime import Core, Layout, get_batch
core = Core()
if not Path(w).is_file(): # if not *.xml
w = next(Path(w).glob("*.xml")) # get *.xml file from *_openvino_model dir
ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))
if ov_model.get_parameters()[0].get_layout().empty:
ov_model.get_parameters()[0].set_layout(Layout("NCHW"))
batch_dim = get_batch(ov_model)
if batch_dim.is_static:
batch_size = batch_dim.get_length()
ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") # AUTO selects best available device
stride, names = self._load_metadata(Path(w).with_suffix(".yaml")) # load metadata
elif engine: # TensorRT
LOGGER.info(f"Loading {w} for TensorRT inference...")
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
if device.type == "cpu":
device = torch.device("cuda:0")
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
logger = trt.Logger(trt.Logger.INFO)
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
context = model.create_execution_context()
bindings = OrderedDict()
output_names = []
fp16 = False # default updated below
dynamic = False
is_trt10 = not hasattr(model, "num_bindings")
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
for i in num:
if is_trt10:
name = model.get_tensor_name(i)
dtype = trt.nptype(model.get_tensor_dtype(name))
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
if is_input:
if -1 in tuple(model.get_tensor_shape(name)): # dynamic
dynamic = True
context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))
if dtype == np.float16:
fp16 = True
else: # output
output_names.append(name)
shape = tuple(context.get_tensor_shape(name))
else:
name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i))
if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
if dtype == np.float16:
fp16 = True
else: # output
output_names.append(name)
shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
elif coreml: # CoreML
LOGGER.info(f"Loading {w} for CoreML inference...")
import coremltools as ct
model = ct.models.MLModel(w)
elif saved_model: # TF SavedModel
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
import tensorflow as tf
keras = False # assume TF1 saved_model
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
import tensorflow as tf
def wrap_frozen_graph(gd, inputs, outputs):
"""Wraps a TensorFlow GraphDef for inference, returning a pruned function."""
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
ge = x.graph.as_graph_element
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
def gd_outputs(gd):
"""Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""
name_list, input_list = [], []
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
name_list.append(node.name)
input_list.extend(node.input)
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(w, "rb") as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = (
tf.lite.Interpreter,
tf.lite.experimental.load_delegate,
)
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
platform.system()
]
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
else: # TFLite
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
# load metadata
with contextlib.suppress(zipfile.BadZipFile):
with zipfile.ZipFile(w, "r") as model:
meta_file = model.namelist()[0]
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
stride, names = int(meta["stride"]), meta["names"]
elif tfjs: # TF.js
raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")
elif paddle: # PaddlePaddle
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
import paddle.inference as pdi
if not Path(w).is_file(): # if not *.pdmodel
w = next(Path(w).rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
weights = Path(w).with_suffix(".pdiparams")
config = pdi.Config(str(w), str(weights))
if cuda:
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
elif triton: # NVIDIA Triton Inference Server
LOGGER.info(f"Using {w} as Triton Inference Server...")
check_requirements("tritonclient[all]")
from utils.triton import TritonRemoteModel
model = TritonRemoteModel(url=w)
nhwc = model.runtime.startswith("tensorflow")
else:
raise NotImplementedError(f"ERROR: {w} is not a supported format")
# class names
if "names" not in locals():
names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}
if names[0] == "n01440764" and len(names) == 1000: # ImageNet
names = yaml_load(ROOT / "data/ImageNet.yaml")["names"] # human-readable names
self.__dict__.update(locals()) # assign all variables to self
def forward(self, im, augment=False, visualize=False):
"""Performs YOLOv5 inference on input images with options for augmentation and visualization."""
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt: # PyTorch
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
elif self.jit: # TorchScript
y = self.model(im)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
elif self.onnx: # ONNX Runtime
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = list(self.ov_compiled_model(im).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings["images"].shape:
i = self.model.get_binding_index("images")
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings["images"].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs["images"] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im.cpu().numpy()
im = Image.fromarray((im[0] * 255).astype("uint8"))
# im = im.resize((192, 320), Image.BILINEAR)
y = self.model.predict({"image": im}) # coordinates are xywh normalized
if "confidence" in y:
box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) # xyxy pixels
conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
else:
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.triton: # NVIDIA Triton Inference Server
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
else: # Lite or Edge TPU
input = self.input_details[0]
int8 = input["dtype"] == np.uint8 # is TFLite quantized uint8 model
if int8:
scale, zero_point = input["quantization"]
im = (im / scale + zero_point).astype(np.uint8) # de-scale
self.interpreter.set_tensor(input["index"], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output["index"])
if int8:
scale, zero_point = output["quantization"]
x = (x.astype(np.float32) - zero_point) * scale # re-scale
y.append(x)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
if isinstance(y, (list, tuple)):
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
return self.from_numpy(y)
def from_numpy(self, x):
"""Converts a NumPy array to a torch tensor, maintaining device compatibility."""
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
def warmup(self, imgsz=(1, 3, 640, 640)):
"""Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
for _ in range(2 if self.jit else 1): #
self.forward(im) # warmup
@staticmethod
def _model_type(p="path/to/model.pt"):
"""
Determines model type from file path or URL, supporting various export formats.
Example: path='path/to/model.onnx' -> type=onnx
"""
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
from export import export_formats
from utils.downloads import is_url
sf = list(export_formats().Suffix) # export suffixes
if not is_url(p, check=False):
check_suffix(p, sf) # checks
url = urlparse(p) # if url may be Triton inference server
types = [s in Path(p).name for s in sf]
types[8] &= not types[9] # tflite &= not edgetpu
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
return types + [triton]
@staticmethod
def _load_metadata(f=Path("path/to/meta.yaml")):
"""Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""
if f.exists():
d = yaml_load(f)
return d["stride"], d["names"] # assign stride, names
return None, None
class AutoShape(nn.Module):
"""AutoShape class for robust YOLOv5 inference with preprocessing, NMS, and support for various input formats."""
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
agnostic = False # NMS class-agnostic
multi_label = False # NMS multiple labels per box
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
max_det = 1000 # maximum number of detections per image
amp = False # Automatic Mixed Precision (AMP) inference
def __init__(self, model, verbose=True):
"""Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""
super().__init__()
if verbose:
LOGGER.info("Adding AutoShape... ")
copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=()) # copy attributes
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
self.pt = not self.dmb or model.pt # PyTorch model
self.model = model.eval()
if self.pt:
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
m.inplace = False # Detect.inplace=False for safe multithread inference
m.export = True # do not output loss values
def _apply(self, fn):
"""
Applies to(), cpu(), cuda(), half() etc.
to model tensors excluding parameters or registered buffers.
"""
self = super()._apply(fn)
if self.pt:
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
m.stride = fn(m.stride)
m.grid = list(map(fn, m.grid))
if isinstance(m.anchor_grid, list):
m.anchor_grid = list(map(fn, m.anchor_grid))
return self
@smart_inference_mode()
def forward(self, ims, size=640, augment=False, profile=False):
"""
Performs inference on inputs with optional augment & profiling.
Supports various formats including file, URI, OpenCV, PIL, numpy, torch.
"""
# For size(height=640, width=1280), RGB images example inputs are:
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
# URI: = 'https://ultralytics.com/images/zidane.jpg'
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
# numpy: = np.zeros((640,1280,3)) # HWC
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
dt = (Profile(), Profile(), Profile())
with dt[0]:
if isinstance(size, int): # expand
size = (size, size)
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference
if isinstance(ims, torch.Tensor): # torch
with amp.autocast(autocast):
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
# Pre-process
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
for i, im in enumerate(ims):
f = f"image{i}" # filename
if isinstance(im, (str, Path)): # filename or uri
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im
im = np.asarray(exif_transpose(im))
elif isinstance(im, Image.Image): # PIL Image
im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f
files.append(Path(f).with_suffix(".jpg").name)
if im.shape[0] < 5: # image in CHW
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
s = im.shape[:2] # HWC
shape0.append(s) # image shape
g = max(size) / max(s) # gain
shape1.append([int(y * g) for y in s])
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
with amp.autocast(autocast):
# Inference
with dt[1]:
y = self.model(x, augment=augment) # forward
# Post-process
with dt[2]:
y = non_max_suppression(
y if self.dmb else y[0],
self.conf,
self.iou,
self.classes,
self.agnostic,
self.multi_label,
max_det=self.max_det,
) # NMS
for i in range(n):
scale_boxes(shape1, y[i][:, :4], shape0[i])
return Detections(ims, y, files, dt, self.names, x.shape)
class Detections:
"""Manages YOLOv5 detection results with methods for visualization, saving, cropping, and exporting detections."""
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
"""Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""
super().__init__()
d = pred[0].device # device
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
self.ims = ims # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
self.files = files # image filenames
self.times = times # profiling times
self.xyxy = pred # xyxy pixels
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
self.n = len(self.pred) # number of images (batch size)
self.t = tuple(x.t / self.n * 1e3 for x in times) # timestamps (ms)
self.s = tuple(shape) # inference BCHW shape
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):
"""Executes model predictions, displaying and/or saving outputs with optional crops and labels."""
s, crops = "", []
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " # string
if pred.shape[0]:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
s = s.rstrip(", ")
if show or save or render or crop:
annotator = Annotator(im, example=str(self.names))
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
label = f"{self.names[int(cls)]} {conf:.2f}"
if crop:
file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None
crops.append(
{
"box": box,
"conf": conf,
"cls": cls,
"label": label,
"im": save_one_box(box, im, file=file, save=save),
}
)
else: # all others
annotator.box_label(box, label if labels else "", color=colors(cls))
im = annotator.im
else:
s += "(no detections)"
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
if show:
if is_jupyter():
from IPython.display import display
display(im)
else:
im.show(self.files[i])
if save:
f = self.files[i]
im.save(save_dir / f) # save
if i == self.n - 1:
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
if render:
self.ims[i] = np.asarray(im)
if pprint:
s = s.lstrip("\n")
return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t
if crop:
if save:
LOGGER.info(f"Saved results to {save_dir}\n")
return crops
@TryExcept("Showing images is not supported in this environment")
def show(self, labels=True):
"""
Displays detection results with optional labels.
Usage: show(labels=True)
"""
self._run(show=True, labels=labels) # show results
def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):
"""
Saves detection results with optional labels to a specified directory.