Skip to content

Development and deployment of accelerated HPC, Science and AI on Intel GPUs

Notifications You must be signed in to change notification settings

uic-evl/intel-gpu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Setting up an AI/ML Workstation with Intel GPU Max 1550 (Ponte Vecchio)

This guide will walk you through the process of setting up an AI/ML workstation using the Intel GPU Max 1550 (Ponte Vecchio). We'll cover the installation of Conda, necessary drivers, and key AI/ML frameworks optimized for Intel hardware.

1. System Requirements for this Guide

  • A system with Intel GPU Max 1550 (Ponte Vecchio)
  • Ubuntu 20.04 or later (recommended)
  • Latest Intel GPU Drivers
  • OneAPI: Link
  • Sudo Permissions
  • Optional: Intel AI Tools

2. Install Conda

  1. Check if wget is installed:

    which wget
  2. If wget is not installed, install it:

    sudo apt-get update
    sudo apt-get install wget
  3. Download the Miniconda installer:

    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
  4. Make the installer executable:

    chmod +x Miniconda3-latest-Linux-x86_64.sh
  5. Run the installer:

    ./Miniconda3-latest-Linux-x86_64.sh
  6. Follow the prompts in the installer.

  7. After installation, restart your terminal or source your .bashrc file:

    source ~/.bashrc

3. Set Up Conda Environment

  1. Create and activate a new conda environment:

    conda create -n intel_ml python=3.10
    conda activate intel_ml
  2. Install AI/ML packages optimized for Intel hardware:

    conda install -c https://software.repos.intel.com/python/conda -c conda-forge --override-channels intel-extension-for-tensorflow=2.15=*cpu* intel-extension-for-pytorch=2.3.100 oneccl_bind_pt=2.3.0 torchvision=0.18.1 torchaudio=2.3.1 deepspeed=0.14.2

4. Verify Installation

To verify that the AI tools are properly installed, use the following commands:

  • Intel® Extension for PyTorch* (GPU):

    python -c "import torch; import intel_extension_for_pytorch as ipex; print(torch.__version__); print(ipex.__version__); [print(f'[{i}]: {torch.xpu.get_device_properties(i)}') for i in range(torch.xpu.device_count())];"
  • Intel® Extension for TensorFlow* (GPU):

    python -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"

6. Optional: Install Additional AI/ML Tools

7. Start Developing

You're now ready to start developing AI/ML applications using your Intel GPU Max 1550. Remember to activate your conda environment before starting your work:

conda activate intel_ml

Happy coding!

About

Development and deployment of accelerated HPC, Science and AI on Intel GPUs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •