-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
161 lines (130 loc) · 6.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import sys
import json
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib
from matplotlib import pyplot as plt
from torchvision import transforms, datasets
from tqdm import tqdm
from model import resinet
matplotlib.use('TkAgg')
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
data_transform = {
"train": transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
image_path = os.path.join(data_root, "PycharmProjects", "garbage_classification") # dataset path
assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
transform=data_transform["train"])
train_num = len(train_dataset)
laji_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in laji_list.items())
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
batch_size = 32
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=nw)
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=nw)
print("using {} images for training, {} images for validation.".format(train_num,
val_num))
net = resinet(num_classes=12)
net.to(device)
# define loss function
loss_function = nn.CrossEntropyLoss()
# construct an optimizer
params = [p for p in net.parameters() if p.requires_grad]
optimizer = optim.Adam(params, lr=0.0001)
Loss_list = []
Accuracy_list = []
epochs = 150
best_acc = 0.0
save_path = 'weight_document/resinet.pth'
train_steps = len(train_loader)
val_steps = len(validate_loader)
for epoch in range(epochs):
# train
net.train()
running_loss = 0.0
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
logits = net(images.to(device))
loss = loss_function(logits, labels.to(device))
loss.backward()
optimizer.step()
# lrs.append(optimizer.param_groups[0]["lr"])
# print statistics
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
# print("epoch: %d, lr:%f" % (epoch, optimizer.param_groups[0]['lr']))
# validate
net.eval()
acc = 0.0 # accumulate accurate number / epoch
val_losses = 0.0
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
val_images, val_labels = val_data
outputs = net(val_images.to(device))
val_loss = loss_function(outputs, val_labels.to(device))
predict_y = torch.max(outputs, dim=1)[1]
acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_losses += val_loss.item()
val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
epochs)
val_accurate = acc / val_num
Loss_list.append(val_losses / val_steps)
Accuracy_list.append(100 * val_accurate)
print('[epoch %d] train_loss: %.3f val_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, running_loss / train_steps, val_losses / val_steps, val_accurate))
if val_accurate > best_acc:
best_acc = val_accurate
torch.save(net.state_dict(), save_path)
print('best_acc: %.3f' % best_acc)
# print('best_acc_total: %.3f' % best_acc)
# 验证集loss和acc曲线可视化
x1 = range(0, epochs)
x2 = range(0, epochs)
y1 = Accuracy_list
y2 = Loss_list
plt.figure(figsize=(19.2, 10))
plt.subplot(2, 1, 1)
plt.plot(x1, y1, '.-')
plt.title('验证集准确率和损失曲线')
plt.ylabel('验证准确率')
plt.xlabel('迭代次数')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, '.-')
plt.xlabel('迭代次数')
plt.ylabel('验证损失')
plt.savefig('./results/1.png', dpi=300)
plt.show()
print('Finished Training')
if __name__ == '__main__':
main()